Isotopic records of solar nebula evolution and controls on planetary composition...
Isotopic records of solar nebula evolution and controls on planetary compositions
This project has three linked strands that will combine to constrain the birth environment of the solar system and the nebular processes that shape bulk planetary compositions. Firstly, I will use ultra-high precision isotope ra...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DEEPTIME
Probing the history of matter in deep time
2M€
Cerrado
AYA2015-67175-P
PROPIEDADES FISICAS Y REFLECTANCIA DE CONDRITAS PRIMITIVAS:...
52K€
Cerrado
Complementarity
A unifying model bulk chondrite complementarity by individu...
185K€
Cerrado
POSEIDON
Petrographic and vOlatile SignaturEs of prImitive and Differ...
171K€
Cerrado
NEWROCK
New isotope tracers of rocky planet forming environments
2M€
Cerrado
VOLATILIS
Origin of volatile elements in the inner Solar System
1M€
Cerrado
Información proyecto ISONEB
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project has three linked strands that will combine to constrain the birth environment of the solar system and the nebular processes that shape bulk planetary compositions. Firstly, I will use ultra-high precision isotope ratio measurements in bulk meteorites to determine the stellar origin of the pre-solar of material that controls the gross compositional differences between planetary bodies. Secondly I will identify the mineralogical hosts of this isotopic variability, using in situ laser ablation analyses with a unique collision-cell multi-collector inductively coupled plasma mass-spectrometer, developed in close collaboration with an industrial partner (Thermo Fisher) as part of the project. Thirdly, I will establish a chronology for the mixing of the pre-solar material within the nebula, by dating individual meteorite components (chondrules) using ‘absolute’ Pb and relative 26Al-26Mg approaches and analysing the same aliquots for their mass-independent isotopic compositions. These observations will be quantitatively interpreted using novel numerical models of particle dynamics in the protoplanetary disk, in collaboration with Fred Cieala. This is an ambitious project that builds on the analytical prowess of the laboratory I have developed at Bristol and couples this with challenging technical developments and inter-disciplinary, modelling calculations. This work will radically improve our understanding of the history of the early solar system and the fundamental processes that shape its evolution.