Investigating bacterial strain evolution through metagenomic genome assemblies
Recent advances in metagenomics have revealed considerable genetic variation among the microbes that populate the human gut. It has been shown that multiple strains of a bacterial species can coexist in a microbial community. Howe...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MicrobioS
Exploring the human gut microbiome at strain resolution
2M€
Cerrado
SAF2012-38421
METAGENOMICA DE VIRUS EN PATOLOGIAS FRECUENTES DE LA CAVIDAD...
94K€
Cerrado
MetaPG
Culture free strain level population genomics to identify di...
1M€
Cerrado
WGEN MUTATION
Understanding mutation using genome wide sequence based appr...
100K€
Cerrado
MAPSEQ
High throughput sequencing to analyse genome variation and e...
87K€
Cerrado
PID2019-107479RB-I00
NUEVOS ASPECTOS DE LA VIRULENCIA EN LAS ENTEROBACTERIAS
121K€
Cerrado
Información proyecto PopMet
Duración del proyecto: 24 meses
Fecha Inicio: 2015-02-27
Fecha Fin: 2017-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Recent advances in metagenomics have revealed considerable genetic variation among the microbes that populate the human gut. It has been shown that multiple strains of a bacterial species can coexist in a microbial community. However, accurately differentiating strains in metagenomic samples is mostly not possible, even though pathogenicity is usually strain specific.
Therefore, I propose to utilize single nucleotide variants (SNVs) to (i) identify and delineate bacterial strains and to (ii) reconstruct single strain genomes. As more than 1,000 metagenomic samples are available, a large database of bacterial genomes from natural environments will be built and made publicly available. This will give the opportunity to investigate the role of adaptive evolution, mutation rate variation between hosts and the colonization history of bacterial strains among humans, all with high confidence due to the sheer data volume. Further, I plan to explore rare SNVs (nucleotide variants segregating at very low frequencies) that many population genetic methods are reliant on. This will be of particular significance, as it will provide insights into growth dynamics of bacterial communities in natural environments, benefiting both evolutionary and clinical research.
Thus, the PopMet project is the application of POPulation genetic analysis on large METagenomic datasets.