Invariant Representations for High Dimensional Signal Classifications
Considerable amounts of high-dimensional signals are continuously being acquired, whether audio, images, videos, or specialized signals for example in geophysics or medicine. Automatic classification and retrieval is strongly need...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-096223-B-I00
RECONOCIMIENTO ESTRUCTURAL DE PATRONES CON TEORIA DE LA INFO...
55K€
Cerrado
MTM2009-09063
METODOS ESTADISTICOS DE APRENDIZAJE, METODOS DE APRENDIZAJE...
59K€
Cerrado
HiDDaProTImA
High dimensional data processing from theory to imaging app...
183K€
Cerrado
EQC2019-006444-P
Adquisición de Infraestructura de Computación Científica de...
236K€
Cerrado
EXPROTEA
Exploring Relations in Structured Data with Functional Maps
1M€
Cerrado
PID2019-105032GB-I00
PROCESAMIENTO DE SEÑAL PARA DATOS DEFINIDOS SOBRE GRAFOS: AP...
165K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Considerable amounts of high-dimensional signals are continuously being acquired, whether audio, images, videos, or specialized signals for example in geophysics or medicine. Automatic classification and retrieval is strongly needed to analyze and access these massive data sets, but current algorithms often produce too many errors. For high-dimensional signals, supervised classification algorithms are typically applied to reduced ``feature vectors''. These feature representations are specialized for each signal modality, for example speech, music, images, videos or seismic signals. This proposal aims at unifying these approaches to improve classification performances, by developing a general mathematical and algorithmic framework to optimize representations for classification. Classification errors result from representations which are not sufficiently informative or which maintain too much variability. The central challenge is to understand how to construct stable, informative invariants, while facing progressively more complex sources of variability. The first task concentrates on invariants to the action of finite groups including translations, rotations and scalings, while preserving stability to deformations. The second task addresses unsupervised representation learning from training data. The third task explores stable representations of invariant geometric signal structures, which is an outstanding problem.These challenges involve building new mathematical tools in harmonic and wavelet analysis, geometry and statistics, in close interaction with numerical algorithms. Classification applications to audio, images, video signals or geophysical signals are expected to serve as a basis for groundbreaking technological advances.