Exploring Relations in Structured Data with Functional Maps
We propose to lay the theoretical foundations and design efficient computational methods for analyzing, quantifying and exploring relations and variability in structured data sets, such as collections of geometric shapes, point cl...
We propose to lay the theoretical foundations and design efficient computational methods for analyzing, quantifying and exploring relations and variability in structured data sets, such as collections of geometric shapes, point clouds, and large networks or graphs, among others. Unlike existing methods that are tied and often limited to the underlying data representation, our goal is to design a unified framework in which variability can be processed in a way that is largely agnostic to the underlying data type.
In particular, we propose to depart from the standard representations of objects as collections of primitives, such as points or triangles, and instead to treat them as functional spaces that can be easily manipulated and analyzed. Since real-valued functions can be defined on a wide variety of data representations and as they enjoy a rich algebraic structure, such an approach can provide a completely novel unified framework for representing and processing different types of data. Key to our study will be the exploration of relations and variability between objects, which can be expressed as operators acting on functions and thus treated and analyzed as objects in their own right using the vast number of tools from functional analysis in theory and numerical linear algebra in practice.
Such a unified computational framework of variability will enable entirely novel applications including accurate shape matching, efficiently tracking and highlighting most relevant changes in evolving systems, such as dynamic graphs, and analysis of shape collections. Thus, it will permit not only to compare or cluster objects, but also to reveal where and how they are different and what makes instances unique, which can be especially useful in medical imaging applications. Ultimately, we expect our study to create to a new rigorous, unified paradigm for computational variability, providing a common language and sets of tools applicable across diverse underlying domains.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.