Recently, we discovered that the notion of Cartan subalgebras builds bridges between C*-algebras, topological dynamics, and geometric group theory. The goal of this research project is to develop our understanding of this concept...
Recently, we discovered that the notion of Cartan subalgebras builds bridges between C*-algebras, topological dynamics, and geometric group theory. The goal of this research project is to develop our understanding of this concept in order to attack the following major open questions:
I. The UCT question
II. The Baum-Connes conjecture
III. The conjugacy problem for topological shifts
IV. Quasi-isometry rigidity for polycyclic groups
UCT stands for Universal Coefficient Theorem and is a crucial ingredient in classification. I want to make progress on the open question whether sufficiently regular C*-algebras satisfy the UCT, taking my joint work with Barlak as a starting point.
The Baum-Connes conjecture predicts a K-theory formula for group C*-algebras which has far-reaching applications in geometry and algebra as it implies open conjectures of Novikov and Kaplansky. My new approach to II will be based on Cartan subalgebras and the notion of independent resolutions due to Norling and myself.
Problem III asks for algorithms deciding which shifts are topologically conjugate. It has driven a lot of research in symbolic dynamics.
Conjecture IV asserts that every group quasi-isometric to a polycyclic group must already be virtually polycyclic. A solution would be a milestone in our understanding of solvable Lie groups.
To attack III and IV, I want to develop the new notion of continuous orbit equivalence which (as I recently showed) is closely related to Cartan subalgebras.
Problems I to IV address important challenges, so that any progress will result in a major breakthrough. On top of that, my project will initiate new interactions between several mathematical areas. It is exactly the right time to develop the proposed research programme as it takes up recent breakthroughs in classification of C*-algebras, orbit equivalence for Cantor minimal systems, and measured group theory, where measure-theoretic analogues of our key concepts have been highly successful.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.