Integrating spatial and genetic information via automated image analysis and int...
Integrating spatial and genetic information via automated image analysis and interactive visualization of tissue data
Digital imaging of tissue samples and genetic analysis by next generation sequencing are two rapidly emerging fields in pathology. The exponential growth in digital imaging in pathology is catalyzed by more advanced imaging hardwa...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PTQ-10-03460
Implementación de tecnologías de secuenciación masiva y apli...
21K€
Cerrado
EQC2021-007365-P
Plataforma de evaluación molecular proteica-genómica en comb...
1K€
Cerrado
INC-FPGS-2010-0788
Alta eficiencia en la búsqueda de nuevos biomarcadores epige...
39K€
Cerrado
PTQ-09-02-02056
Desarrollo de técnicas basadas en análisis de ADN y ARN para...
48K€
Cerrado
PROSEQO
PROtein SEQuencing using Optical single molecule real time d...
3M€
Cerrado
Información proyecto TissueMaps
Duración del proyecto: 72 meses
Fecha Inicio: 2016-03-14
Fecha Fin: 2022-03-31
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Digital imaging of tissue samples and genetic analysis by next generation sequencing are two rapidly emerging fields in pathology. The exponential growth in digital imaging in pathology is catalyzed by more advanced imaging hardware, comparable to the complete shift from analog to digital images that took place in radiology a couple of decades ago: Entire glass slides can be digitized at near the optical resolution limits in only a few minutes’ time, and fluorescence as well as bright field stains can be imaged in parallel.
Genetic analysis, and particularly transcriptomics, is rapidly evolving thanks to the impressive development of next generation sequencing technologies, enabling genome-wide single-cell analysis of DNA and RNA in thousands of cells at constantly decreasing costs. However, most of today’s available technologies result in a genetic analysis that is decoupled from the morphological and spatial information of the original tissue sample, while many important questions in tumor- and developmental biology require single cell spatial resolution to understand tissue heterogeneity.
The goal of the proposed project is to develop computational methods that bridge these two emerging fields. We want to combine spatially resolved high-throughput genomics analysis of tissue sections with digital image analysis of tissue morphology. Together with collaborators from the biomedical field, we propose two approaches for spatially resolved genomics; one based on sequencing mRNA transcripts directly in tissue samples, and one based on spatially resolved cellular barcoding followed by single cell sequencing. Both approaches require development of advanced digital image processing methods. Thus, we will couple genetic analysis with digital pathology. Going beyond visual assessment of this rich digital data will be a fundamental component for the future development of histopathology, both as a diagnostic tool and as a research field.