Inorganic Organic Hybrid Materials through Controlled Self Assembly of Nano Buil...
Inorganic Organic Hybrid Materials through Controlled Self Assembly of Nano Building Blocks
There have been major advances in the efficiency and efficacy of flexible electronic devices such as Organic Photovoltaics (OPV’s) and Organic Light Emitting Diodes (OLEDS). Premature failure of the devices will occur through ingr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto HySOL
Líder del proyecto
ALLNEX BELGIUM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
164K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
There have been major advances in the efficiency and efficacy of flexible electronic devices such as Organic Photovoltaics (OPV’s) and Organic Light Emitting Diodes (OLEDS). Premature failure of the devices will occur through ingress of moisture and oxygen. Today there is however no simple, low cost process to create a barrier to such ingress and extend device lifetimes. This project will investigate the structure–barrier property relationships in inorganic-organic hybrid coatings. The structures will be formed through the controlled self-assembly of nano-scale inorganic building-blocks synthesized through adaption of sol-gel chemistry. A variety of characterization methodologies including NMR, GPC, LC-MASS, DSC (Differential Scanning Calorimetry), WAXD (wide-angle X-ray diffraction), SAXS (small-angle X-ray scattering) will be used to assess the structures formed. Focus will be directed toward regimes of hybrid composition where the inorganic self-assembles as lamellae. Such structures offer the prospects of coatings which give both the high barrier and the high optical transparency required in targeted applications. Cytec Surface Specialties, a chemical company, is the world leader in the supply of radiation curing resins for coatings and has the capabilities to formulate, apply, cure and test these hybrid coatings. The prospective fellow, Dr D Kogelnig, will have ample potential to expand his chemical skills from his previous work on the P/O/C based inorganic chemistry of ionic liquids to Si/O/C based chemistry required here and broaden his technical competences in polymer chemistry. His geographic transfer (Austria to Belgium) and from academia to industry is an example of genuine mobility. The training available would help him establish a career in Industry, but should he return to academia his experience will make his potential contribution from an academic environment all the more valued by industrial partners.