Self Assembled Nanostructures for Organic Inorganic Hybrid Nanomaterials
Bio-inspired self-assembled nanostructures comprises one of the most exciting developments in the fields of chemistry, physics, biology and materials science. These materials are vastly ordered structures with high-aspect ratio an...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2010-19191
HELICATOS MULTIMETALICOS FUNCIONALES DE INTERES INDUSTRIAL Y...
129K€
Cerrado
NANOITSELF
Advanced functional nanocomposites by cooperative self assem...
61K€
Cerrado
MAT2015-71117-R
NUEVAS ARQUITECTURAS HIBRIDAS MEDIANTE ENSAMBLADO CONTROLADO...
254K€
Cerrado
CTQ2009-07881
NANOPARTICULAS METALICAS Y MATERIALES HIBRIDOS ORGANICO-INOR...
91K€
Cerrado
MAT2009-13977-C03-03
SINTESIS Y NANOESTRUCTURACION DE MOLECULAS-BIT MAGNETICAS
182K€
Cerrado
RED2018-102833-T
CIENCIA MOLECULAR SOBRE SUPERFICIES: SINTESIS Y FUNCIONALIDA...
15K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Bio-inspired self-assembled nanostructures comprises one of the most exciting developments in the fields of chemistry, physics, biology and materials science. These materials are vastly ordered structures with high-aspect ratio and are used as scaffolds to create chemically functionalized surfaces with control at the atomic level. The chemical properties of the materials are highly tailorable based on the choice of organic struts. These remarkable characteristics and properties have interesting applications such as photovoltaic cells, selective catalysis, adsorption, sensing, and bio-recognition. Herein, it is now proposed to extend the range of properties of self-assembled nanomaterials to encompass presentation of chemically functional groups on novel nanostructures. Our design approach relies upon hydrogen bonding, amphiphilic and metal chelating small molecules programmed to form nanostructures upon need. The work to be performed will encompass design, synthesis and characterization of self-assembled nanoscale materials in variuos architectures. Quantitative experimental studies of metal binding capability and systematic experimental use of the nanostructures will be studied for building devices for practical applications. The proposed interdisciplinary studies will accumulate knowledge that may lead to novel highly selective catalytic ensembles, chemical sensors, chemically smart coatings and alternative renewable energy products.