Information age microscopy for deep vision imaging of biological tissue
Modern biology could not exist without the optical microscope. Hundreds of years of research have seemingly developed microscopes to perfection, with one essential limitation: in turbid biological tissue, not even the most advance...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NOLIMIT
Nonlinearity assisted Optical Focusing and Imaging Deep Insi...
270K€
Cerrado
DEEP3P
Three photon fluorescence imaging deep inside scattering med...
185K€
Cerrado
FIS2009-09135
DESARROLLO DE NUEVOS DISPOSITIVOS DE REGISTRO Y VISUALIZACIO...
159K€
Cerrado
EQC2021-007642-P
Sistema de Microscopía Avanzada para organoides, embriones,...
847K€
Cerrado
Lensless
High resolution microscopy without lenses a new generation...
2M€
Cerrado
Información proyecto DEEPVISION
Duración del proyecto: 69 meses
Fecha Inicio: 2016-02-23
Fecha Fin: 2021-11-30
Líder del proyecto
UNIVERSITEIT TWENTE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Modern biology could not exist without the optical microscope. Hundreds of years of research have seemingly developed microscopes to perfection, with one essential limitation: in turbid biological tissue, not even the most advanced microscope can penetrate deeper than a fraction of a millimetre. At larger depths light scattering prevents the formation of an image. DEEP VISION takes a radically new approach to microscopy in order to lift this final limitation.
Microscopes are based on the idea that light propagates along a straight line. In biological tissue, however, this picture is naive: light is scattered by every structure in the specimen. Since the amount of ‘non-scattered’ light decreases exponentially with depth, a significant improvement of the imaging depth is fundamentally impossible, unless scattered light itself is used for imaging.
In 2007, Allard Mosk and I pioneered the field of wavefront shaping. The game-changing message of wavefront shaping is that scattering is not a fundamental limitation for imaging: using a spatial light modulator, light can be focused even inside the most turbid materials, if ‘only’ the correct wavefront is known.
DEEP VISION aims to initiate a fundamental change in how we think about microscopy: to use scattered light rather than straight rays for imaging. The microscope of the future is no longer based on Newtonian optics. Instead, it combines new insights in scattering physics, wavefront shaping, and compressed sensing to extract all useful information from a specimen.
Whereas existing microscopes are ignorant to the nature of the specimen, DEEP VISION is inspired by information theory; imaging revolves around a model that integrates observations with statistical a-priori information about the tissue. This model is used to calculate the wavefronts for focusing deeper into the specimen. Simulations indicate that my approach will penetrate at least four times deeper than existing microscopes, without loss of resolution.