Individual and Collective Migration of the Immune Cellular System
The immune system consists of a collection of cells with a high ability to migrate that work together to remove harmful foreign material from the body. Each immune cell can migrate between tissues, fulfilling specific functions in...
The immune system consists of a collection of cells with a high ability to migrate that work together to remove harmful foreign material from the body. Each immune cell can migrate between tissues, fulfilling specific functions in different microenvironments. However, this immune-surveillance response is not very effective in those tissues with a high non-physiological stiffness and a significant level of residual stresses, which are characteristics of solid tumors. Understanding the mechanisms that govern the cellular immune response to solid tumors is crucial to strengthen the development of novel immunotherapies. ICoMICS aims to develop a novel predictive modeling platform to investigate how therapeutic immune cells (TICs) sense, migrate and interact with cancerous cells and with the tumor microenvironment (TME). This platform will be built on two key pillars: in-vitro 3D tumor organoids and multicellular simulations, which will be combined and integrated by means of Bayesian optimization and machine learning techniques. On the one hand, cell culture microfluidic chips will be microfabricated, allowing continuous perfusion of chemical modulators through hydrogels (including decellularized matrices from murine stroma) inhabited by human tumor cells arranged to recreate 3D solid tumor organoids. On the other hand, an agent-based model will be developed to simulate cells as deformable objects, including cell-cell and cell-matrix interactions, combined with a continuum approach to model matrix mechanics and chemical reactions of cells, such as reactive oxygen species (ROS) and nutrients diffusion. Finally, ICoMICS will originally develop two innovative mechanistic-based immunotherapies. First, TICs will be subjected to high strains in micro-channels to induce them higher migration capacity. Second, TICs will be clustered as bio-bots, to ensure that they have improved functionality. All this research will be applied to 3 main solid tumors: lung, liver and pancreas.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.