Innovating Works

SPARTEVs

Financiado
Impact of extracellular vesicles isolated from seminal plasma upon Assisted Repr...
Impact of extracellular vesicles isolated from seminal plasma upon Assisted Reproductive Technology oocyte maturation fertilization and embryo culture in a mammalian model This Proposal aims to enhance the current knowledge of seminal extracellular vesicles (EVs) and to evaluate whether they can improve the efficiency of in vitro embryo production (IVP), a technology with a great potential in the bi... This Proposal aims to enhance the current knowledge of seminal extracellular vesicles (EVs) and to evaluate whether they can improve the efficiency of in vitro embryo production (IVP), a technology with a great potential in the biomedical and agricultural field but still inefficient. Inquire the EVs is currently a challenge as they seem to play a vital role in intercellular communication, including embryo development. Knowing that seminal plasma (SP) is beneficial for sperm-oocyte interaction and embryo development and that it contains EVs, our hypothesis is that seminal EVs could play a pivotal role in the successful development of the above cited reproductive events. The experiments will be performed with gametes and porcine SP, as this species is relevant in the agricultural field and is an excellent animal model for exploring human reproductive physiology. The first experiment will focus on developing an efficient procedure to isolate the two EV-subtypes, exosomes and microvesicles, and then analyze their charge in proteins to reveal the specific EV-subtype function. Then, the main objective will be to evaluate the role of each SP-EV-subtype on in vitro oocyte maturation, fertilization and subsequent embryo development. Further, the transcriptomic changes experienced by embryos will be analyzed. The objectives will be reached through a multidisciplinary approach. The Project will be carried out at the University of Bologna, will be supervised by Prof. Tamanini, who has an extensive experience in reproductive biology, and will strength the Applicant’s background. The Proposal represents an innovative challenge for IVP, both for livestock animals and humans, since it tackles the problematic of IVP efficiency from a novel angle. The Proposal has a great potential impact on Society, addressing two H2020-challenges Health, Demographic Change and Wellbeing and Food security; sustainable agriculture and forestry, marine and inland water research and the bioeconomy. ver más
28/11/2023
183K€
Duración del proyecto: 44 meses Fecha Inicio: 2020-03-25
Fecha Fin: 2023-11-28

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2023-11-28
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 183K€
Líder del proyecto
ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5