Ice ocean interactions during Heinrich Events in the Labrador Sea
Northern hemisphere ice sheets are particularly vulnerable to climate change as the Arctic is warming twice as fast as the rest of the planet. Scenarios of future ice sheet stability, however, are associated with significant uncer...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-113051RB-C31
BALANCE DE MASA, DINAMICA GLACIAR E INTERACCION GLACIAR-OCEA...
188K€
Cerrado
PID2020-117768RB-I00
MODELIZACION DE LAS INTERACCIONES MARINAS Y DE LA PERDIDA DI...
158K€
Cerrado
NEMOSID
Next generation Modeling of Sedimentary Ice sheet Dynamics
219K€
Cerrado
PRE2018-084318
INTERACCION TERMOMECANICA GLACIAR-OCEANO: ESTIMACION DE LAS...
93K€
Cerrado
PID2020-114856RB-I00
IMPACTO DEL RETROCESO DEL CASQUETE GLACIAR Y CONTROLES GEOLO...
212K€
Cerrado
CTM2017-84441-R
INTERACCION TERMOMECANICA GLACIAR-OCEANO: ESTIMACION DE LAS...
212K€
Cerrado
Información proyecto IceLab
Duración del proyecto: 29 meses
Fecha Inicio: 2020-04-15
Fecha Fin: 2022-09-30
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Descripción del proyecto
Northern hemisphere ice sheets are particularly vulnerable to climate change as the Arctic is warming twice as fast as the rest of the planet. Scenarios of future ice sheet stability, however, are associated with significant uncertainty, due to a lack of understanding of the relevant internal climate feedbacks. These processes involve ocean-ice sheet interactions and the effects of sea ice on the terrestrial cryosphere. With increased societal concerns over rising sea levels, it is more than ever important to understand the implications of climate change for ice sheet stability. The key lies in understanding the response of past ice sheets to climate change.
Prominent episodes of past ice-sheet collapse are so-called Heinrich events during the last glacial period, originating in Hudson Strait. While modelling studies have long hinted at the importance of sea ice in the Labrador Sea for subsurface warming and ocean induced melting during Heinrich events, this has not been shown using proxy methods. My project will investigate the links and feedbacks of sea ice, ocean circulation, subsurface warming, and ice-sheet collapse in the Labrador Sea to determine the role of the coupled cryosphere-ocean system for ice sheet stability across. Additionally, the effect of enhanced freshwater discharge on the system will be documented and a spatial-temporal map of North Atlantic sea ice dynamics across Heinrich events will be constructed. I will apply an integrated approach of organic and inorganic geochemistry, using sea-ice biomarkers, foraminiferal isotopes, and foraminiferal trace metals (i.e. Mg/Ca) in combination with state-of-the-art dating and correlation techniques. The new records will provide important clues with respect to a potential oceanic trigger of Hudson Strait iceberg surges during Heinrich events as well as advancing our understanding of the coupled cryosphere-ocean system, vital to accurately predict mass loss from the Greenland ice sheet in the future.