Hybrid Volumetric Optoacoustic Ultrasound Tomography for Noninvasive Large Scale...
Hybrid Volumetric Optoacoustic Ultrasound Tomography for Noninvasive Large Scale Recording of Brain Activity with High Spatiotemporal Resolution
Non-invasive observation of fast spatiotemporal activity patterns of large neural populations distributed over entire brains is a longstanding goal of neuroscience. Not only would such abilities significantly promote our knowledge...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FONT
Functional Optoacoustic Neuro Tomography
150K€
Cerrado
NEUROPT
Non invasive imaging of brain function and disease by pulsed...
8M€
Cerrado
SAF2017-91824-EXP
IMAGEN DE RESONANCIA MAGNETICA DE TRACTOS NEURALES ACTIVOS
18K€
Cerrado
MIDOC
Multimodal Imaging of Disorders of Consciousness
185K€
Cerrado
AEGEUS
AEGEUS - A Novel EEG Ultrasound Device for Functional Brain...
3M€
Cerrado
HDEFONE
Novel algorithmic frameworks for functional neuroimaging usi...
181K€
Cerrado
Información proyecto OPTOACOUSTOGENETICS
Duración del proyecto: 60 meses
Fecha Inicio: 2016-09-05
Fecha Fin: 2021-09-30
Líder del proyecto
UNIVERSITAT ZURICH
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Non-invasive observation of fast spatiotemporal activity patterns of large neural populations distributed over entire brains is a longstanding goal of neuroscience. Not only would such abilities significantly promote our knowledge on brain function and its pathophysiology but they are also expected to accelerate development of novel therapies targeting neurological and neuropsychiatric disorders. The progress is hampered by the limited capacity of state-of-the-art functional neuroimaging tools, which do not permit simultaneous monitoring of whole-brain activity with an adequate spatiotemporal resolution. Our recently developed five-dimensional optoacoustic tomography technique is ideally poised to overcome these limitations – it has shown excellent capacity for imaging intrinsic contrast in entire brains of vertebrates and rodents non-invasively; delivers unmatched temporal resolution in the milliseconds range for true volumetric imaging in real time; capable of label-free observations of hemodynamic changes and sensitive to genetic markers of neural activity.
Yet, several fundamental challenges ought to be addressed before true potential of optoacoustic functional neuroimaging is unveiled. First, optoacoustic monitoring of fast neural activation under physiologically relevant stimuli and in real disease models has not been achieved. Furthermore, a variety of acoustic effects introduced by the skull compromise performance of optoacoustics in transcranial imaging of murine models, further hindering its clinical translation potential. Finally, technology needs to be developed that can deliver information from single neurons while maintaining high volumetric imaging speed. By resolving those challenges, the current project will yield a unique and groundbreaking functional neuroimaging method that can truly transform the existing paradigms in neuroscience by delivering real time information from hundreds of thousands or even millions of neurons simultaneously.