The currently available neuroimaging tools, such as functional magnetic resonance imaging (fMRI) and optical microscopy, are not adequate for deep tissue volumetric visualization of brain activity in real time. The need for such s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HDEFONE
Novel algorithmic frameworks for functional neuroimaging usi...
181K€
Cerrado
2BOLD
Deciphering the neonatal shift in neurovascular coupling: a...
173K€
Cerrado
PID2019-106481RB-C31
NOVEDOSA TECNOLOGIA OPTICA PARA LA OBTENCION DE IMAGENES DEL...
218K€
Cerrado
OPTOACOUSTOGENETICS
Hybrid Volumetric Optoacoustic Ultrasound Tomography for Non...
2M€
Cerrado
Imaging-inthe-Magnet
Bridging the gap between cellular imaging and fMRI BOLD imag...
2M€
Cerrado
NEUROPT
Non invasive imaging of brain function and disease by pulsed...
8M€
Cerrado
Información proyecto FONT
Duración del proyecto: 19 meses
Fecha Inicio: 2016-05-25
Fecha Fin: 2017-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The currently available neuroimaging tools, such as functional magnetic resonance imaging (fMRI) and optical microscopy, are not adequate for deep tissue volumetric visualization of brain activity in real time. The need for such solutions underlies the large scale multi-year European Human Brain Project as well as the BRAIN initiative promoted by the US government. Under the currently funded ERC-StG project, we have pioneered the so-called five-dimensional optoacoustic imaging method that can simultaneously render spectrally and temporally resolved volumetric images deep from highly scattering tissues. Taking this achievement one step further, in this PoC grant we propose to prototype and validate a functional optoacoustic neuro-tomography (FONT) scanner specifically tailored for fully noninvasive volumetric observations of activity in whole brains of rodents. In combination with optoacoustics' well-established capacity for resolving vascular anatomy and multiple hemodynamic parameters deep in scattering tissues, this solution will open new vistas in the study of brain activity and development of novel therapies targeting neurological and neuropsychiatric disorders.