High throughtput electrophysiological measurements coupled with transcriptomics...
High throughtput electrophysiological measurements coupled with transcriptomics to reveal cellular dysfunction in type 2 diabetes
In this project, I will develop methods to simultaneously measure transcriptomes with single-cell resolution and perform high-throughput functional measurements of individual pancreatic islet cells. I will focus on β- and α-cells...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
OptoBETA
Multicellular regulation of insulin secretion from pancreati...
2M€
Cerrado
HuPIPA
A Human Pancreatic Islet Perturbation Atlas (HuPIPA) to deci...
165K€
Cerrado
BETASCREEN
Validation of an in vivo translational medicine approach for...
149K€
Cerrado
Multi-Islet
Development of Multiscale Analysis of Pancreatic Beta Cell F...
200K€
Cerrado
INSIGHT
An Integrated Network of Glucose Sensing Cells in Glucose H...
2M€
Cerrado
Información proyecto T2D-EOMICS
Duración del proyecto: 24 meses
Fecha Inicio: 2023-03-08
Fecha Fin: 2025-03-31
Líder del proyecto
GOETEBORGS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In this project, I will develop methods to simultaneously measure transcriptomes with single-cell resolution and perform high-throughput functional measurements of individual pancreatic islet cells. I will focus on β- and α-cells which regulate glucose levels by secreting the two main glucoregulatory hormones -insulin and glucagon- and whose dysfunction is associated with diabetes. The islet is a highly heterogenous mini-organ, making it an ideal tissue to study the relationship between molecular and functional heterogeneity. It has been recently developed the use of patch-clamp electrophysiology and single-cell RNA sequencing (patch-seq) using whole-cell electrophysiology. In this work, I will combine high-density microelectrode array technology (HD-MEA) and transcriptomic methods to identify changes that lead to dysfunctional cellular states in type 2 diabetes. To do so, I will build a cell cherry-picking system to perform single-cell RNA sequencing after electrophysiological measurements in the same islet cell. Then I will use this system to investigate subpopulations of α- and β-cells that have been previously identified in human islets from donors with type 2 diabetes using transcriptomic methods, but whose implications in cell and tissue function are yet unclear.