High energy density Mg-Based metal hydrides storage system
EDen aims at building a forefront scientific, technological and industrial expertise in energy storage and recovery system. In the past years hydrogen has been indicated as an advantageous energy carrier under many points of view,...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PTQ-14-06937
Solución energética integrada con almacenamiento de hidrógen...
65K€
Cerrado
PID2020-115987RJ-I00
PERSPECTIVAS ATOMICAS PARA EL DISEÑO DE SUPERFICIES FUNCIONA...
145K€
Cerrado
PCI2024-153437
Materiales para la energía y el medioambiente
124K€
Cerrado
MAT2008-06547-C02-01
SISTEMA SOLAR-HIDROGENO: DESARROLLO DE MATERIALES AVANZADOS...
208K€
Cerrado
CTQ2012-32519
DESARROLLO DE NUEVOS MATERIALES Y PROCESOS PARA LA GENERACIO...
191K€
Cerrado
PID2021-126098OB-I00
MATERIALES SOSTENIBLES Y AVANZADOS PARA LA FOTOGENERACION Y...
206K€
Cerrado
Información proyecto EDEN
Duración del proyecto: 44 meses
Fecha Inicio: 2012-10-01
Fecha Fin: 2016-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
EDen aims at building a forefront scientific, technological and industrial expertise in energy storage and recovery system. In the past years hydrogen has been indicated as an advantageous energy carrier under many points of view, mainly environment preservation and high energy density.The necessity of hydrogen on specific mobile applications and energy backup system is promoted by the growing demand of sustainable solutions and the interface of discontinuous renewable energies.Hydrogen storage is well known to be the major bottleneck for the use of H2 as energy carrier and despite the huge scientific and industrial effort [fig.1] in developing a novel practical solution for the hydrogen storage, actually there are few storage systems available for nice markets.The request for energy storage systems is growing as fast as the energy availability from renewable sources, consequently the market is demanding for more performing systems, safer and economic.It is emerged from the past EU projects (STORHY, NESSHY, COSY, NANOHY, FLYHY) that the hydrogen storage in solid state is the better solution to seek. Between the materials studied for solid state hydrogen storage, Magnesium based systems represent nowadays the major candidate able to meet the industrial storage targets: they have proper gravimetric and energetic density (typical >7 wt.%, ≥ 100 kg H2/m3) and suitable charging and discharging time and pressure.The main barrier to the wide use of the Magnesium based materials in hydrogen storage system is represented by two limitations: the working temperature of about 300°C and the high heat of reaction, around 10Wh/g.More specifically, EDen project aims to overtake these limitations by developing and realising an efficient hydrogen storage system that brings together available solutions from the market, the results of the EU projects on hydrogen storage and the development of novel solution for the storing material.