We here propose a new approach to the formation of Hierarchical Electroactive Hybrids exploiting Biological Motifs, which will provide new strategies and tools for control that will define future bottom-up 3D construction of mater...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BES-2011-047882
AUTO-ENSAMBLAJE, NANOESTRUCTURACION Y PROCESAMIENTO DE MOLEC...
43K€
Cerrado
NANO-ARCH
Assembly of Colloidal Nanocrystals into Unconventional Types...
1M€
Cerrado
META
Materials Enhancement for Technological Applications
548K€
Cerrado
DIAMONDDNA
DNA origami templates for nanocrystalline diamond nanostruct...
196K€
Cerrado
MAT2017-84838-P
COPOLIMEROS BLOQUE COMO PLATAFORMAS VERSATILES PARA ACCEDER...
121K€
Cerrado
NANOCOORD
Design study and development of novel functional hybrid na...
100K€
Cerrado
Información proyecto BIOBRIDs
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
209K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We here propose a new approach to the formation of Hierarchical Electroactive Hybrids exploiting Biological Motifs, which will provide new strategies and tools for control that will define future bottom-up 3D construction of materials in the field of functional nanomaterials for nanoelectronics. Functional electroactive oligo(aniline)s, combined with guanine hydrogen-bonding units, will be combined with single-stranded DNA block copolymers in rationally designed ways, so that information encoded in the biological materials will control spatial placement and orientation, interactions and level of functionality in three dimensions within the formed complex and hierarchical superstructures.
This groundbreaking approach will utilise combinations of DNA block copolymer (BCP) self-assembly, electroactivity and encoded self-assembly, and will open unexplored avenues in the priority areas of nanotechnology, nanoelectronics and advanced materials through its interdisciplinary and multidisciplinary approach. This proposed research will rely on modern synthetic protocols of organic chemistry, chemicophysical analyses of optoelectronic properties and structure-property interplay, self-assembly in the solid state, device fabrication and testing. It is expected that the outcomes of this proposed research will impact across these disciplines, and contribute knowledge to a high priority area for both society and the research community within the EU and beyond.
This fellowship and project will be an important step forward in the research career of Dr. Dasgupta, who has experience and a very strong track record in the synthesis and assembly of functional molecular architectures and supramolecular aggregation. Dr. Dasgupta will therefore be enabled, through this Marie Curie fellowship, to systematically investigate this highly relevant research area that has been left unexplored to date, and thus develop his independent scientific career fully.