Healthy Microbiota Avoiding Fractures during Ageing
The basic research problem: Gradual loss of bone and muscle mass with ageing leads to increased risk of fractures in the elderly population. There is a large medical need for new fracture preventive therapies with minimal side eff...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-106893RA-I00
DESDE LA BIOLOGIA DEL ENVEJECIMIENTO HASTA INTERVENCIONES SO...
121K€
Cerrado
PID2019-110906RB-I00
NUEVAS INTERVENCIONES TERAPEUTICAS MULTIDOMINIO PARA RETRASA...
326K€
Cerrado
PID2020-113788RB-I00
IDENTIFICACION DE FACTORES DE RIESGO Y BIOMARCADORES DE VULN...
86K€
Cerrado
SSCM13-1E-2643
Fragilidad y sarcopenia en ancianos de Castilla-La Mancha
84K€
Cerrado
RYC2021-033521-I
Gut microbiota modulation through diet in obesity and elderl...
236K€
Cerrado
RYC2021-031291-I
Unraveling the molecular mechanisms of ageing and age-relate...
236K€
Cerrado
Información proyecto HeMAFA
Duración del proyecto: 64 meses
Fecha Inicio: 2023-10-16
Fecha Fin: 2029-02-28
Líder del proyecto
GOETEBORGS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The basic research problem: Gradual loss of bone and muscle mass with ageing leads to increased risk of fractures in the elderly population. There is a large medical need for new fracture preventive therapies with minimal side effects and novel biomarkers that improve the prediction of fracture risk. The aim of the proposed research is to test our hypothesis that the increased fracture risk in elderly people is caused by an age-dependent unhealthy change of the gut microbiota (GM) composition, resulting in reduced bone and muscle mass, and thereby increased fracture risk.
Methodology: We will identify age-dependent GM signatures that are causally associated with reduced bone and muscle mass and thereby increased fracture risk in elderly subjects. A major emphasis will be to determine causality of the GM using a variety of recently developed GM-related genetic instruments (for GM composition and function as well as for circulating metabolites) as exposures in 2-sample Mendelian randomization (MR). In addition, we will use faecal microbiota transplantation (FMT) to directly determine causality of age-dependent GM alterations for reductions in bone and muscle mass. Based on this information, we will design candidate probiotic treatments and test their efficacy in mouse osteoporosis models. Finally, we will determine the clinical usefulness of the identified GM signatures for fracture prediction in elderly subjects.
Research progress beyond the state of the art: We will employ three complementary methods, 2-sample MR, FMT, and treatment studies, to determine causality for GM on musculoskeletal parameters. For this research, we have established large well-characterized Nordic cohorts with metagenome sequence data and information on incident fractures available in 2023. Identification of a GM-signature with a robust effect on age-related bone and muscle loss will open-up completely new avenues to avoid fractures in elderly.