Harnessing the electric potential of cable bacteria to generate electricity sust...
Harnessing the electric potential of cable bacteria to generate electricity sustainably
Cable bacteria are centimetre-long, filamentous, multicellular bacteria present ubiquitously in freshwater and marine sediments, and participate in long-distance electron transfer by coupling the oxidation of sulphide in anoxic se...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FJC2021-047260-I
Microbial electrochemical technologies for biofuels and bioe...
65K€
Cerrado
RTC-2016-5420-5
Tratamiento de aguas residuales industriales con podrucción...
225K€
Cerrado
SpinBioAnode
Nature’s spin-flipping machine: design of the semiconductor-...
Cerrado
ESBCO2
Electrosynthesis of biofuels from gaseous carbon dioxide cat...
184K€
Cerrado
HiBriCarbon
Mixed Biotic and abiotic functionalysed electrodes for Plant...
176K€
Cerrado
ENE2010-18687
DESARROLLO DE PILAS DE COMBUSTIBLE MICROBIANAS DE ALTA EFICI...
15K€
Cerrado
Información proyecto Cable electricity O2
Duración del proyecto: 27 meses
Fecha Inicio: 2023-04-12
Fecha Fin: 2025-07-31
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
215K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Cable bacteria are centimetre-long, filamentous, multicellular bacteria present ubiquitously in freshwater and marine sediments, and participate in long-distance electron transfer by coupling the oxidation of sulphide in anoxic sediment to the reduction of oxygen. Cable bacteria possess an internal electric grid, enabling them to transport electrons over centimeter-scale distances. This project proposes the cultivation of cable bacteria on electrodes to harness their potential to generate electricity. Further, the development of a switchable bioelectrochemical system altering between electrogenesis and electrotrophy is proposed. Such a device would enable biological power generation and energy storage in a single device, and will be tested to power a microprocessor biologically, enabling development of biodegradable electronics. These experiments would be performed in specialized bioelectrochemical systems by varying the applied potential from positive to negative to induce the switch. Electrochemical interactions of cable bacteria with electrodes will be monitored by amperometry, voltammetry, and impedance spectroscopy. The cables will be integrated into a power management system consisting of a microprocessor chip, a current and voltage-measuring circuitry and a microcontroller to power the microprocessor with electrons obtained from the sediment. Finally, the physiological possibility of dark oxygen generation by cable bacteria in anaerobic sediments will also be explored, that would enable the use of cables as intermediates to convert any aerobic microbe into an electrogen. This mechanism will potentially uncover an unknown mode of oxygen production and usher in a completely new understanding of oxygen transport through the oxic-anoxic interface. The project bridges the applied and fundamental by probing cable bacteria electrophysiology to develop robust applications that will enable sustainable power generation.