Guarding Genome Stability Dynamic Control of Chromosome Segregation by Kinetoch...
Guarding Genome Stability Dynamic Control of Chromosome Segregation by Kinetochore Signalling Pathways
Equal segregation of chromosomes during cell division is vital to all life. Using a unique combination of cell biological and biochemical techniques, I will show how an essential set of enzymes promotes error-free chromosome segre...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
KINETOCORE
Molecular Dissection of the Kinetochore Microtubule Interf...
900K€
Cerrado
MolStruKT
Molecular structure and cell cycle regulated assembly of the...
1M€
Cerrado
BFU2015-68493-P
REGULACION DE LA SEGREGACION CROMOSOMICA Y DE LA DIVISION CE...
113K€
Cerrado
CHROMSEG
Structural Basis for Centromere-Mediated Control of Error-fr...
2M€
Cerrado
STRUCTMITO
Structural Basis for the Molecular Mechanisms Involving the...
100K€
Cerrado
RECEPIANCE
Molecular reconstitution of epigenetic centromere inheritanc...
2M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Equal segregation of chromosomes during cell division is vital to all life. Using a unique combination of cell biological and biochemical techniques, I will show how an essential set of enzymes promotes error-free chromosome segregation. During each cell division, genetically identical daughter cells are generated by accurate partitioning of the duplicated chromosomes. This relies on proper spatio-temporal execution of various highly dynamic processes. The activity of a small group of enzymes is crucial for at least two of these processes: correct chromosome positioning on the cell's equator prior to cell division and the ability to prevent cell division until every chromosome is thus positioned. The molecular fundamentals of signalling to and from these enzymes will be uncovered by chemical genetics, quantitative (phospho)proteomics, rapid affinity purifications and live-cell deconvolution microscopy. The resulting insights will open research avenues that will ultimately contribute to comprehensive models of how biochemical networks manage to prevent chromosome mis-segregation.