The goal of the project is to develop new techniques for estimation and evaluation of well-known asymptotic invariants of groups, including growth of groups, isoperimetric profiles, entropy and probability to return to the origin...
The goal of the project is to develop new techniques for estimation and evaluation of well-known asymptotic invariants of groups, including growth of groups, isoperimetric profiles, entropy and probability to return to the origin of random walks as well as of some more recent invariants related to the geometric criteria for construction of quotients of groups, which appeared in the joint work of PI with A.Karlsson (2010), and in a recent work of Ozawa (2015) giving a short functional analytic proof of the Polynomial Growth Theorem. We plan to work on the Gap conjecture of Grigorchuk, which states that any group of growth asymptotically strictly less than exp(n1/2) has polynomial growth, the question about the forms of Foelner sets in groups of intermediate and exponential growth and Kaimanovich and Vershik conjecture about characterisation of groups of exponential growth in terms of non-triviality of the Poisson boundary of some symmetric random walks. We plan to develop methods sharpening previous results of PI about isoperimetric inequalities for wreath products and relation between growth of groups and isoperimetry, and apply them for growth estimates and the description of the boundary.
A further goal of the project is to introduce new constructions of non-elementary amenable groups which can show that necessary conditions in growth conjecture and isoperimetric inequalities cannot be weakened.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.