The integrity of genetic information is central to life, yet the DNA is vulnerable to damage from internal and external sources. Incorrect repair of DNA damage drives mutagenesis, loss of genetic information, ageing, and cancer. D...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
3DGenomeSearch
Sifting through the 3D Genome: Computational Models of Homol...
2M€
Cerrado
CHOREOGRAPHY OF HR
In vivo choreography of DNA molecules and repair proteins du...
243K€
Cerrado
DDREAMM
Dna Damage REsponse Actionabilities Maps and Mechanisms
9M€
Cerrado
DISSECTING BRCA2
Dissecting the role of BRCA2 in the DNA damage response and...
100K€
Cerrado
SHIELD
To Shield, or not to Shield: deciphering DNA repair pathway...
231K€
Cerrado
Información proyecto RecPAIR
Duración del proyecto: 25 meses
Fecha Inicio: 2019-04-10
Fecha Fin: 2021-06-07
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
192K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The integrity of genetic information is central to life, yet the DNA is vulnerable to damage from internal and external sources. Incorrect repair of DNA damage drives mutagenesis, loss of genetic information, ageing, and cancer. Double strand DNA breaks (DSBs) are perhaps the most threatening DNA lesions, where the integrity of both strands of the DNA duplex is interrupted at the same position. In E. coli, faithful repair of DSBs is possible only through the homologous recombination (HR) pathway which uses replicated chromosome as a template to recover the information. At the center of HR lies an elusive search process, during which broken strand localises and pairs with the repair template.
I will use a combination of CRISPR/dCas9 screening and in-situ genotyping of pooled library of strains to characterise the genetic landscape controlling the homology search. First, I will develop a low probability DSB induction method, to limit the DSB-formation to only a single chromosome per cell. Next, I will design and implement a whole-genome CRISPRi screen coupled to high-throughput sequencing and map the genes involved specifically in the homology directed repair of DSBs. The knowledge of the recombination-specific genes will allow to create a refined, high-quality phenotypic screen. In this screen the whole chromosome dynamics will be monitored and defects in the DNA movements will be characterised for each tested target with a microfluidic-based fluorescent microscopy. Each phenotype will be linked to a specific gene using the state-of-the-art in-situ phenotyping approach called DuMPLING. The functional characterisation of recombination genes will allow to conclude a molecular model of the search process in vivo.