Functionally graded Additive Manufacturing scaffolds by hybrid manufacturing
Additive Manufacturing (AM) market has grown with trends higher than 20% every year in the last 10 years. Their fast uptake is due to different innovative factors such as no shape limits in manufacturing process, full customisatio...
ver más
30/11/2019
UNIVERSITEIT MAAST...
5M€
Presupuesto del proyecto: 5M€
Líder del proyecto
UNIVERSITEIT MAASTRICHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto FAST
Duración del proyecto: 49 meses
Fecha Inicio: 2015-10-09
Fecha Fin: 2019-11-30
Líder del proyecto
UNIVERSITEIT MAASTRICHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
5M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Additive Manufacturing (AM) market has grown with trends higher than 20% every year in the last 10 years. Their fast uptake is due to different innovative factors such as no shape limits in manufacturing process, full customisation on the single artefact, localised production and no waste material. In particular the ability to print any shape allows to design the products not following the constricting conventional manufacturing processes but just focalising on their function. This Design for Function feature is one of the main drivers for AM uptake on a wider scale production and the limited number of functional materials that can be printed or the limit in controlling gradient and surface properties are showing to be an important barrier. This is particularly true in manufacturing of tissue engineering (TE) scaffolds where the technology has a promising growth over the last decade. Scaffolds production for tissue regeneration is one of the main fields where the Design for Function feature of AM make the difference relative to the other production techniques if in the production process all the needed Functions can be introduced: mechanics, geometry (porosity and shape), biomaterial, bio-active molecules and surface chemical groups.
The FAST project aims to integrate all these Functions in the single AM process.
This integration will be obtained by the hybridisation of the 3D polymer printing with melt compounding of nanocomposites with bio-functionalised fillers directly in the printing head and atmospheric plasma technologies during the printing process itself. Final objective of the project is to realize a demonstrator of the proposed hybrid AM technology in order to achieve a small pilot production of scaffolds for bone regeneration with the novel smart features to be tested in some in-vivo trials.