The aim of this project is to develop a robust theoretical framework to allow the modelling of the build-up of surface carbonaceous deposits in jet fuel injection systems so that fuel injectors for advanced engines such as the VHB...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
VIAFUMA
VIbration Analysis methodology for FUel Manifolds of lean bu...
897K€
Cerrado
START
inveSTigation of an ultrA compact Reverse flow combusTor
641K€
Cerrado
KIAI
Knowledge for Ignition Acoustics and Instabilities
8M€
Cerrado
EQC2018-004605-P
Estudio del proceso de inyección en atmosferas presurizadas
255K€
Cerrado
TRA2010-17564
ESTUDIO TEORICO EXPERIMENTAL DE LA INFLUENCIA DEL COMBUSTIBL...
12K€
Cerrado
PTQ-15-07480
Diseño, desarrollo y fabricación de un quemador de gas de al...
44K€
Cerrado
Información proyecto FINCAP
Duración del proyecto: 52 meses
Fecha Inicio: 2017-04-07
Fecha Fin: 2021-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of this project is to develop a robust theoretical framework to allow the modelling of the build-up of surface carbonaceous deposits in jet fuel injection systems so that fuel injectors for advanced engines such as the VHBR may be designed with an acceptable maintenance frequency and their life span predicted. Given the high heat sink requirement on aviation fuel in geared turbofan architecture, the prediction capability developed within this proposal is essential to a rapid and low cost development of VHBR, lean burn fuel injector systems.
The project team consisting of the Low Carbon Combustion Centre, the Department of Chemistry and the Centre for Advanced Manufacturing in the University of Sheffield will conduct a three-year programme to develop the understanding of fuel injector coking through a combination of experimentation and simulations of various scales and complexities. The proposed programme builds on the significant expertise within the core team.
The objectives of the Proposal are:
1. Construction of an updated and robust autoxidation kinetic mechanism for surrogate hydrocarbons representative of an approved aviation fuel.
2. Validation of the detailed mechanism with autoxidation results for real fuel and surrogate hydrocarbon obtained in a near isothermal plug flow reactor over a range of temperatures. Followed by the automated mechanism reduction through species lumping and reaction grouping.
3. Validation of mathematical model with respect to the experimental results obtained from low TRL level experiments and parameter optimisation
4. Experimental investigation of surface deposition in a simulated burner feed arm using Aviation Fuel Thermal Stability Test Unit and assess impact of surface roughness in a representative fuel injector at TRL 5 conditions to validate coking model.
5. Incorporate this understanding into a number of modelling tools to permit incorporation of coking calculations within CFD packages.