Reconciling general relativity with quantum physics is the Holy Grail of theoretical physics. Today the major physical predictions involving both gravity and quantum fields, in the framework of quantum field theory in curved space...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2011-29813-C02-02
AGUJEROS NEGROS CUANTICOS, SUPERGRAVEDAD Y COSMOLOGIA
100K€
Cerrado
FIS2008-06078-C03-01
SIMETRIA, METODOS NUMERICOS Y MODELOS ANALOGOS EN GRAVITACIO...
128K€
Cerrado
FIS2008-06078-C03-01
SIMETRIA, METODOS NUMERICOS Y MODELOS ANALOGOS EN GRAVITACIO...
128K€
Cerrado
QUANTIVIOL
Quantifying Quantum Gravity Violations of Causality and the...
2M€
Cerrado
HoloHair
Information Encoding in Quantum Gravity and the Black Hole I...
1M€
Cerrado
FlatHolo
Towards a holographic approach for gravity in asymptotically...
Cerrado
Información proyecto FDtoQG
Duración del proyecto: 28 meses
Fecha Inicio: 2015-03-25
Fecha Fin: 2017-08-02
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Reconciling general relativity with quantum physics is the Holy Grail of theoretical physics. Today the major physical predictions involving both gravity and quantum fields, in the framework of quantum field theory in curved space-times, are black hole radiation and particle production in an expanding Universe. These phenomena are the corner stones of our present knowledge about the quantum nature of space-time, and it is of crucial importance to understand deeply their features and consequences in the quest for a quantum theory of gravity. Unfortunately, these features are still poorly understood, and are experimentally out of reach in astrophysics. This project will bring together an experienced researcher with expertise in Hawking radiation and black hole physics, with a world leader physicist in artificial space-times in fluid flows to tackle these questions in the innovative approach of analog gravity. Unlike in astrophysics, artificial black holes can be experimentally realized using fluids, showing both their classical and quantum properties. Because these fluids are well understood, both experimentally and theoretically, many conceptual questions can be explicitly addressed in such systems. By working in a world-leading group in the field at the University of Nottingham, the local expertise and mine will be the perfect match to tackle these questions.