From Environment to Physiology Neuroendocrine Circuits and Genetic Mechanisms t...
From Environment to Physiology Neuroendocrine Circuits and Genetic Mechanisms that Modulate Ageing and Development
We seek to understand how organisms interpret complex environments to generate appropriate changes in their physiology. Specifically, we will focus on how food and temperature affect lifespan and a switch between reproductive grow...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AGE-MEMORY
Identification of insulin signalling factors that delay age...
165K€
Cerrado
ACMO
Systematic dissection of molecular machines and neural circu...
2M€
Cerrado
MetAGEn
Metabolic and Genetic Regulation of Ageing
2M€
Cerrado
PID2021-122239OB-I00
SEÑALIZACION POR CA2+: UNA NUEVA DIANA PARA ACTUAR SOBRE EL...
191K€
Cerrado
NEURONAGE
Molecular Basis of Neuronal Ageing
2M€
Cerrado
Información proyecto NEUROAGE
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We seek to understand how organisms interpret complex environments to generate appropriate changes in their physiology. Specifically, we will focus on how food and temperature affect lifespan and a switch between reproductive growth versus a specialised developmental arrest (dauer) in C. elegans. Extensive work has indicated that the daf-2 insulin-like peptide (ILP) receptor plays a pivotal role in these processes, but key questions remain about how environmental inputs are linked to secretion of relevant ILP ligands. We propose to address these questions using a quantitative approach. We will use new tools to measure and manipulate the activity of neuroendocrine circuits, and exploit new technologies for automated microscopy of live C. elegans. First, we will delineate the neuroendocrine circuit by identifying ILPs, neurons and the type of neurosecretory activity that affects lifespan and dauer development. Second, we will detail how environmental information is transduced, by measuring the magnitude, kinetics and duration of environment-responsive expression of ILPs and other genes in specific neurons. Using gene expression as a new functional readout for neuroendocrine activity, we will determine how environmental, neuronal and genetic inputs regulate the activity of this neuroendocrine circuit. Third, we will address how environmental, neuronal and genetic inputs affect ILP secretion to influence lifespan and development. By combining quantitative analysis of environmental responses, neuroendocrine activity and physiological outcomes, we will determine how environmental inputs are linked to dauer development and lifespan. This integrated in vivo approach is currently only feasible in simple organisms such as C. elegans.