Foundation models for molecular diagnostics - machine learning with biological ‘...
Foundation models for molecular diagnostics - machine learning with biological ‘common sense’
Molecular diagnostics is crucial in fulfilling the promise of personalized medicine. While we are amidst an AI revolution, current machine learning models (ML) struggle to effectively learn from molecular (‘omics’) patient profile...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TIN2017-88728-C2-1-R
AVANCES EN EL DISEÑO Y ADAPTACION DE ALGORITMOS DE APRENDIZA...
95K€
Cerrado
TIN2015-71873-R
AVANCES EN ARQUITECTURAS DE COMPUTO PARA APRENDIZAJE AUTOMAT...
117K€
Cerrado
PID2020-116907RB-I00
INTELIGENCIA ARTIFICIAL INSESGADA Y EXPLICABLE PARA IMAGENES...
164K€
Cerrado
AIS-CaP
Interpretable Artificial Intelligence across Scales for Next...
1M€
Cerrado
PID2021-122209OB-C32
MODELIZACION ESTOCASTICA PARA EL APRENDIZAJE AUTOMATICO. APL...
40K€
Cerrado
PTQ2021-012120
Modelos híbridos basados en imagen y PLN para la clasificaci...
83K€
Cerrado
Información proyecto FoundationDX
Duración del proyecto: 62 meses
Fecha Inicio: 2024-02-27
Fecha Fin: 2029-04-30
Descripción del proyecto
Molecular diagnostics is crucial in fulfilling the promise of personalized medicine. While we are amidst an AI revolution, current machine learning models (ML) struggle to effectively learn from molecular (‘omics’) patient profiles and fail to make robust predictions. Perhaps this is not a surprise. After all, molecular disease biology is immensely complex, and we ask ML models to predict such complicated things as patient prognosis, without them ‘knowing’ anything about molecular biology and based on limited training data.
To address this, I will create foundation models on top of the vast troves of available biomolecular data, such as multi-omics profiles in healthy and diseased tissues, high-resolution single-cell data and biological knowledge graphs. This unique approach is driven by self-supervised learning (SSL), an important driver of AI, which offers the opportunity to learn a comprehensive representation of the multimodal biology of the cell – without the need for well-annotated patient data.
Starting from this strong basis, the FoundationDX model can then reliably predict cancer subtype or prognosis as it no longer needs to start from scratch on too high-dimensional, too low sample-size datasets. Effectively, we give our systems biological ‘common sense’, foregoing the need for millions of labeled training samples. This uniquely enables us to address one of the most clinically relevant questions: which treatment is best for the patient?
The FoundationDX research program is designed to deliver key insights into how the SSL revolution can be used to drive progress in the field of molecular diagnostics. It contains a ‘clinical-grade’ benchmarking module and solves three urgent diagnostic challenges, including noninvasive subtyping of pediatric brain cancer. The time for powerful, robust and generalizable, knowledge-aware machine learning solutions to previously intractable molecular diagnostics problems has come. FoundationDX aims to deliver this.