Foundation models for molecular diagnostics - machine learning with biological ‘...
Foundation models for molecular diagnostics - machine learning with biological ‘common sense’
Molecular diagnostics is crucial in fulfilling the promise of personalized medicine. While we are amidst an AI revolution, current machine learning models (ML) struggle to effectively learn from molecular (‘omics’) patient profile...
ver más
Descripción del proyecto
Molecular diagnostics is crucial in fulfilling the promise of personalized medicine. While we are amidst an AI revolution, current machine learning models (ML) struggle to effectively learn from molecular (‘omics’) patient profiles and fail to make robust predictions. Perhaps this is not a surprise. After all, molecular disease biology is immensely complex, and we ask ML models to predict such complicated things as patient prognosis, without them ‘knowing’ anything about molecular biology and based on limited training data.
To address this, I will create foundation models on top of the vast troves of available biomolecular data, such as multi-omics profiles in healthy and diseased tissues, high-resolution single-cell data and biological knowledge graphs. This unique approach is driven by self-supervised learning (SSL), an important driver of AI, which offers the opportunity to learn a comprehensive representation of the multimodal biology of the cell – without the need for well-annotated patient data.
Starting from this strong basis, the FoundationDX model can then reliably predict cancer subtype or prognosis as it no longer needs to start from scratch on too high-dimensional, too low sample-size datasets. Effectively, we give our systems biological ‘common sense’, foregoing the need for millions of labeled training samples. This uniquely enables us to address one of the most clinically relevant questions: which treatment is best for the patient?
The FoundationDX research program is designed to deliver key insights into how the SSL revolution can be used to drive progress in the field of molecular diagnostics. It contains a ‘clinical-grade’ benchmarking module and solves three urgent diagnostic challenges, including noninvasive subtyping of pediatric brain cancer. The time for powerful, robust and generalizable, knowledge-aware machine learning solutions to previously intractable molecular diagnostics problems has come. FoundationDX aims to deliver this.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.