The demand for sustainable methods to build chemical bonds has led to the rise of catalytic reactions, especially using abundant and benign metals. In this context, iron has emerged as a powerful catalyst to mediate various transf...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2015-64937-R
SINTESIS AZAHETEROCICLICA MEDIANTE METODOLOGIAS ORGANOMETALI...
90K€
Cerrado
TANDEng
Engineering catalyst interoperability in next generation tan...
2M€
Cerrado
PID2019-103965GB-I00
CATALIZADORES PARA PROCESOS QUIMICOS SOSTENIBLES Y ENERGIA
157K€
Cerrado
SEAROX
Sulfur Enabled Annulations for Modular Efficient and Genera...
213K€
Cerrado
PGC2018-096839-B-I00
REACCIONES DE ACOPLAMIENTO DE GRUPOS FUNCIONALES NATIVOS MED...
363K€
Cerrado
CTQ2013-43012-P
INVESTIGACIONES MECANISTICAS PARA SINTESIS ORGANICA SOSTENIB...
163K€
Cerrado
Información proyecto FI4P
Duración del proyecto: 26 meses
Fecha Inicio: 2020-02-24
Fecha Fin: 2022-05-17
Líder del proyecto
UNIVERSITE DE LIEGE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
166K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The demand for sustainable methods to build chemical bonds has led to the rise of catalytic reactions, especially using abundant and benign metals. In this context, iron has emerged as a powerful catalyst to mediate various transformations including cross-couplings between (pseudo)halide electrophilic partners and organometallic nucleophiles, usually Grignard reagents.
We aim to develop a modular and versatile Flow-enabled Iron-catalysed cross-coupling protocol for Pharmaceutical applications (FI4P), leveraging the unique properties of flow chemistry to implement cross-couplings between organolithium derivatives and electrophiles. Building on the significant expertise of the academic host in this field, we will seek to harness flow technology to exert spatiotemporal control over reactive intermediates, thus ensuring the functionalisation of halide precursors with reactive lithium organyls generated in situ. The particularly high reaction rates observed in iron-catalysed cross-couplings will allow the incorporation of valuable functional groups usually incompatible with organolithium derivatives.
This approach will deliver a sustainable method to assemble relevant molecular scaffolds of interest to the pharmaceutical industry. With the involvement of NovAliX, an industrial partner specialised in transferring academic innovations into industrial processes, we will eventually apply our synthetic protocol to the large-scale manufacture of valuable APIs and the generation of a small collection of molecules designed to complement our existing library for Fragment Based Drug Design.