Flat bands and topology in superconductive materials
Flat bands allow to increase the critical temperature of the superconducting transition thanks
to their high density of states. However a characterization of the flat bands that support a finite
supercurrent is open. In some cases...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SuperFlat
Interactions Superconductivity Catalysis and Topology In F...
2M€
Cerrado
1D-Engine
1D electrons coupled to dissipation a novel approach for un...
1M€
Cerrado
FIS2015-67898-P
CONTROL EN FEMTOSEGUNDOS DE REDES CRISTALINAS
83K€
Cerrado
CHAMPAGNE
Charge orders Magnetism and Pairings in High Temperature Su...
1M€
Cerrado
SCLoTHiFi
Numerically exact theory of transport in strongly correlated...
1M€
Cerrado
FIS2010-19807
ESPECTROSCOPIA DE FLUCTUACIONES, CORRIENTES SUPERCRITICAS Y...
254K€
Cerrado
Información proyecto FLATOPS
Duración del proyecto: 24 meses
Fecha Inicio: 2016-03-16
Fecha Fin: 2018-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Flat bands allow to increase the critical temperature of the superconducting transition thanks
to their high density of states. However a characterization of the flat bands that support a finite
supercurrent is open. In some cases a nonzero Chern number, a topological invariant of the band
structure, ensures a finite superfluid mass density. This tantalizing relation between topology and
superfluidity is novel and unexplored. My aim is to characterize superfluidity in lattice systems with flat
bands that have different symmetries, lattice structures, dimensionality, interparticle interactions
and possess different topological invariants, in order to provide a general picture of which ones
are potentially useful as a superconductor with high critical temperature. Whereas mean-field (BCS)
theory can provide an essential qualitative understanding and a transparent link to topological properties,
I plan to use more reliable methods such as Density Matrix Renormalization Group (DMRG)
in 1D and Dynamical Mean Field Theory (DMFT) in 2D and 3D. The ideal platform to test the
theoretical predictions are ultracold gases, but I expect to provide useful results also for multiband
superconductors, topological media, carbon-based superconductors, Quantum Hall systems
and high-Tc superconductors.