Numerically exact theory of transport in strongly correlated systems at low temp...
Numerically exact theory of transport in strongly correlated systems at low temperature and under magnetic fields
Transport in strongly correlated materials is one of the central topics in condensed matter physics. Due to major prospects for technological applications, particular attention is paid to the cuprate superconductors, and by associ...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CorTopo
Correlations and Topology in Electronic Systems
100K€
Cerrado
PNICTEYES
Using extreme magnetic field microscopy to visualize correla...
2M€
Cerrado
MAT2009-08165
ESTUDIO DE LA SEPARACION DE FASES CUANTICAS PARA TRANSICIONE...
61K€
Cerrado
FIS2014-53219-P
CORRELACIONES ELECTRONICAS Y TOPOLOGIA EN SISTEMAS MULTI-ORB...
27K€
Cerrado
SIESS
Strongly interacting electrons in synthetic superlattices
1M€
Cerrado
FTIBoundary
Boundary theories of fractional topological insulators
209K€
Cerrado
Información proyecto SCLoTHiFi
Duración del proyecto: 61 meses
Fecha Inicio: 2022-11-17
Fecha Fin: 2027-12-31
Líder del proyecto
INSTITUT ZA FIZIKU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Transport in strongly correlated materials is one of the central topics in condensed matter physics. Due to major prospects for technological applications, particular attention is paid to the cuprate superconductors, and by association, to kappa-organic materials and moiré systems. The last decade has seen great progress in the understanding of the generic high-temperature properties of these systems, largely based on the microscopic yet simplified interacting lattice models. However, there are multiple outstanding questions regarding their low-temperature physics.
The mechanism of the strange-metallic linear-in-temperature resistivity and its relation to superconductivity have so far eluded understanding. There is conflicting evidence for the quantum critical (QC) scenario, which is a common view that there is a zero-temperature QC point hidden behind the superconducting dome on the phase diagram of the cuprates. Recent magnetoresistance measurements in these and other materials contribute to a puzzling phenomenology. The factors that determine the magnitude of the superconducting critical temperature are also poorly understood. Further progress is blocked by the limitations of quantum many-body numerical methods.
To address these questions, we propose to employ a highly promising new approach to the numerical solution of the many-electron problem. It may overcome the long-standing limitations and allow for an unprecedented accuracy and control. The real-frequency diagrammatic Monte Carlo method will yield numerically exact results for the resistivity in a range of lattice models, at low temperature, and as a function of magnetic field. These results will help interpret recent experimental results, set new predictions, and open doors to reverse-engineering of functional materials. The tools we develop will be readily applicable to a wide range of condensed matter physics problems, and we will make all code packages publicly available.