Descripción del proyecto
The proposed project is dedicated to bringing technology for next generation characterization of optical fields to a market level. The technology, based on recent innovations at LMU, will facilitate simple optoelectronic devices, for e.g. carrier-envelope-phase (CEP) measurements, enabling the characterization of few-cycle pulses at a single laser shot level. Contemporary CEP-meter techniques, i.e. the f-2f interferometer and Sterero-ATI technique, have limitations, including they do not easily offer extension of single-shot measurements towards increasing repetition rates (beyond 100 kHz), have limited operation wavelengths, or involve a sophisticated apparatus, which is bulky and expensive. Based on our recent innovation, the realization of a simple phase meter that consists of only a few components and can even work in ambient air, we propose to explore bringing this and also its related field-metrology technology to the market to overcome such limitations.
We aim to improve the long-term stability of the device, to enhance the signal sensitivity, and to decrease the temporal response time for high-repetition single-shot CEP detection and retrieval. These include a new design of the device structure, a proper encapsulation of the core device including electromagnetic shielding, the incorporation of fast electronics components, and the development of a user-friendly software. The newly developed device will undergo a series of tests with different ultrafast laser sources both in the near and mid-infrared wavelength range and at repetition rate up to at least 100 kHz. In parallel to the S&T development, we will carry out the ‘go-to-market’ activities, which include securing the IP, standardization and modulation of the product, the analysis of worldwide potential market, discovery of supply and distribution channels, and formulation of sales strategies.