Exploring the molecular grammar of IDP assembly and condensation at ultra-high t...
The last years have seen unprecedented breakthroughs in protein structural biology, with the resolution revolution in cryo-electron microscopy and the release of AlphaFold. The combination of advanced experimental structural biolo...
The last years have seen unprecedented breakthroughs in protein structural biology, with the resolution revolution in cryo-electron microscopy and the release of AlphaFold. The combination of advanced experimental structural biology, machine learning algorithms and molecular simulations has put the fully quantitative description of how the structure and interactions of folded proteins are defined by their amino acid sequence within close reach.
This leaves us with a final frontier in protein science, namely to achieve a similar level of understanding for intrinsically disordered proteins (IDPs). The energy landscapes of IDPs often comprise a multitude of nearly isoenergetic states, that include assembled forms, such as amyloid fibrils and liquid condensate droplets.
Much effort has been spent in order to achieve an understanding of the molecular grammar of IDP assembly and condensation, i.e. how amino acid sequence defines both kinetics and thermodynamics of these processes. Current state of the art is to evaluate a few dozens of sequence perturbations quantitatively in vitro.
In EMMA, I propose to develop a fundamentally new approach that will ultimately allow to improve on current methods by more than 8 orders of magnitude. This ground-breaking improvement will be achieved by exploiting the power of mRNA display, in which the biophysical behavior of each individual sequence within large libraries of protein-mRNA constructs can be evaluated in a one pot reaction. We will combine quantitative screening of the energetics of liquid condensate droplet formation of up to 10^10 sequences by mRNA display with a multiparametric biophysical toolbox that allows the key thermodynamic and kinetic parameters of binding and assembly to be evaluated for thousands of selected sequence variants.
EMMA will transform our ability to probe the mechanisms and interrelationships of the interactions and assembly processes that define IDP function and disease-related malfunction.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.