Tessellation-based analysis of dynamic protein structures and their complexes -...
Tessellation-based analysis of dynamic protein structures and their complexes - MoleculAR MOTions meet TEssellations (MARMOTTE).
This year has seen a breakthrough in structural bioinformatics - deep learning-based methods, most notably Google DeepMind's AlphaFold2, have demonstrated near-experimental accuracy of protein structure predictions. However, even...
This year has seen a breakthrough in structural bioinformatics - deep learning-based methods, most notably Google DeepMind's AlphaFold2, have demonstrated near-experimental accuracy of protein structure predictions. However, even the best protein structure prediction methods do not automatically provide knowledge about protein dynamics and protein interactions, which is often essential to understand or predict the biological functions of proteins. Those functions are performed via intermolecular interactions, and such interactions almost always involve conformational changes of engaged partners. The problem of modeling dynamic protein structures and their complexes is still largely unsolved - this project aims to significantly contribute towards its future solution by exploring the link between computational geometry, statistical physics, and machine learning. The postdoctoral researcher will develop novel methods that: given a dynamic (moving) molecular structure, efficiently compute tessellation-derived contact areas; given a starting structure and its tessellation-derived contacts areas, predict (using a graph neural network) how the interatomic contact areas will change upon motion; given a protein complex model generated by docking, use the predicted statistical properties of the contact areas to estimate (using a graph neural network) the protein-protein binding energy score. If successfully developed, such methods will provide unique data about the dynamics of tessellation-derived interatomic contact areas. Most importantly, they will provide effective dynamics-aware scores for assessing and ranking structural models of protein complexes.ver más
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.