Tessellation-based analysis of dynamic protein structures and their complexes -...
Tessellation-based analysis of dynamic protein structures and their complexes - MoleculAR MOTions meet TEssellations (MARMOTTE).
This year has seen a breakthrough in structural bioinformatics - deep learning-based methods, most notably Google DeepMind's AlphaFold2, have demonstrated near-experimental accuracy of protein structure predictions. However, even...
ver más
EMMA
Exploring the molecular grammar of IDP assembly and condensa...
2M€
Cerrado
bAIes
Integrative, AI-aided Inference of Protein Structure and Dyn...
3M€
Cerrado
VTX-HPC
Molecular Visualization of High Performance Computing Simula...
150K€
Cerrado
SuperStoc
Super-resolved stochastic inference: learning the dynamics o...
1M€
Cerrado
BES-2013-063991
DESCRIPCION DE PROTEINAS INTRINSECAMENTE DESORDENADAS MEDIAN...
84K€
Cerrado
RNA-Diffusion
RNA Dynamics prediction with Diffusion Models
173K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
This year has seen a breakthrough in structural bioinformatics - deep learning-based methods, most notably Google DeepMind's AlphaFold2, have demonstrated near-experimental accuracy of protein structure predictions. However, even the best protein structure prediction methods do not automatically provide knowledge about protein dynamics and protein interactions, which is often essential to understand or predict the biological functions of proteins. Those functions are performed via intermolecular interactions, and such interactions almost always involve conformational changes of engaged partners. The problem of modeling dynamic protein structures and their complexes is still largely unsolved - this project aims to significantly contribute towards its future solution by exploring the link between computational geometry, statistical physics, and machine learning. The postdoctoral researcher will develop novel methods that: given a dynamic (moving) molecular structure, efficiently compute tessellation-derived contact areas; given a starting structure and its tessellation-derived contacts areas, predict (using a graph neural network) how the interatomic contact areas will change upon motion; given a protein complex model generated by docking, use the predicted statistical properties of the contact areas to estimate (using a graph neural network) the protein-protein binding energy score. If successfully developed, such methods will provide unique data about the dynamics of tessellation-derived interatomic contact areas. Most importantly, they will provide effective dynamics-aware scores for assessing and ranking structural models of protein complexes.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.