Exploring the landscape of biomolecular condensates in enterovirus infection
The genus Enterovirus comprises many important human pathogens (e.g. polio-, coxsackie-, and rhinovirus) that cause a wide array of diseases ranging from mild to life-threatening. As there are hundreds of enteroviruses and vaccina...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EV-2C
Structural and functional studies of enterovirus 2C proteins...
176K€
Cerrado
VIRLUMINOUS
Illuminating the enteroviral life cycle
2M€
Cerrado
AIROPICO
Academia Industry Research and Development Opportunities for...
3M€
Cerrado
PID2021-124566OB-I00
ANALISIS DE INTERACCIONES ARN-PROTEINA Y ARN-ARN EN VIRUS DE...
145K€
Cerrado
Información proyecto BARONET
Duración del proyecto: 24 meses
Fecha Inicio: 2024-04-12
Fecha Fin: 2026-04-30
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
188K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The genus Enterovirus comprises many important human pathogens (e.g. polio-, coxsackie-, and rhinovirus) that cause a wide array of diseases ranging from mild to life-threatening. As there are hundreds of enteroviruses and vaccination to all of these is not feasible, there is an unmet need for pan-enterovirus antiviral drugs. Hence, we need to deepen our knowledge on the enterovirus life cycle and virus-host interactions.
Mammalian cells express an arsenal of sensors that function to restrict virus replication and spreading. These include RIG-I and MDA5, which recognize viral RNA and trigger expression of type I interferon (IFN), and PKR, a kinase that upon recognition of viral RNA blocks translation and triggers the formation of membrane-less condensates, so-called stress granules (SGs), that serve as platform for RIG-I and MDA5 signaling. On the other hand, viruses have developed sophisticated mechanisms to suppress antiviral responses. The enterovirus 2A protease (2Apro) has been recognized by the host lab to antagonize SG formation and IFN-gene transcription.
Emerging evidence points towards the existence of many more types of condensates with a role in antiviral signaling, such as PKR clusters, RNase L bodies, and cGAS foci. Unfortunately, comprehensive insight into the composition, formation, and dynamics of these condensates in infected cells are missing. In this project, I aim to comprehensively characterize antiviral condensates in cells infected with wild-type enterovirus or a 2Apro inactive mutant. I will use state-of-the-art microscopy approaches, including an assay that was recently developed by the host lab and that allows real-time visualization of the viral life cycle. Besides, I will assess the role of condensates as signaling platforms that connect stress sensors with effectors of the innate immune response in infected cells. This project will provide insights into enterovirus-host interactions and may uncover new targets for antiviral therapy.