Experimental Study of Three dimensional Dynamics of Active Particles
Active particles are microscopic objects capable of self-propulsion. Examples include natural microorganisms, e.g. motile bacteria, chemotactic cells, and artificial colloidal microswimmers. From the fundamental side, their study...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
InterActive
Interacting with Active Particles
1M€
Cerrado
Duración del proyecto: 24 meses
Fecha Inicio: 2017-03-06
Fecha Fin: 2019-03-31
Líder del proyecto
GOETEBORGS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
174K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Active particles are microscopic objects capable of self-propulsion. Examples include natural microorganisms, e.g. motile bacteria, chemotactic cells, and artificial colloidal microswimmers. From the fundamental side, their study can shed light on the far-from-equilibrium physics underlying the adaptive and collective behavior of microscopic biological entities. From the more applied side, they provide tantalizing options to perform tasks not easily achievable with other available techniques, such as the targeted localization, pick-up and delivery of microscopic cargoes, e.g., in drug delivery, bioremediation and chemical sensing. Despite the ever-growing interest that active particles have arisen in the scientific community, almost all experimental studies have focused on quasi-two-dimensional investigations, mainly because of limitations in the employed microscopic techniques. Nevertheless, the three-dimensional (3D) dynamics and behavior of active particles can be qualitatively different, as has already been shown by numerical and theoretical studies; this is particularly true when considering active particles moving in 3D complex and crowded environments. With this project, I will fill this gap by developing an experimental technique capable of investigating the motion of active particles in 3D. First, I will implement a state-of-the-art 3D super-resolution microscope (high-frame rate, large field of view). Then, I will use it to characterize the 3D motion of single active particles in homogenous environments. Finally, I will study their motion in complex and crowded environments similar to the ones that can be found in nature or in applications; this will permit me to explore and develop effective strategies to control the motion of active particles in these environments. This will pave the way towards a deeper understanding of the behavior of active particles and also towards realistic applications.