Innovating Works

CODOVIREVOL

Financiado
Evolution of viral codon usage preferences manipulation of translation accuracy...
Evolution of viral codon usage preferences manipulation of translation accuracy and evasion of immune response Fidelity during information transfer is essential for life, but it pays to be unfaithful if it provides an evolutionary advantage. The immune system continuously generates diversity to put up with recurrent pathogen challenges, an... Fidelity during information transfer is essential for life, but it pays to be unfaithful if it provides an evolutionary advantage. The immune system continuously generates diversity to put up with recurrent pathogen challenges, and many viruses, in its turn, have evolved mechanisms to generate diversity to evade immune restrictions, even at the cost of enduring high mutation rates. Synonymous codons are not used at random and are not translated with similar efficiency. A large proportion of viruses infecting humans, especially those causing chronic infections, display a poor adaptation to the codon usage preferences of their host. This observation is a paradox, as viral genes completely depend upon the cellular translation machinery for protein synthesis. The poor match between codon usage preferences of virus and host negatively affects speed and accuracy of viral protein translation. We propose here that maladaptation of codon usage preferences in human viruses may have an adaptive value as it decreases translational fidelity, results in the synthesis of an ill-defined population of viral proteins and provides a way to escape immune surveillance. We will address the fitness effects of codon usage bias at the molecular and cellular levels, and later at the organism level in a rabbit model of papillomavirus infection. We will apply experimental evolution to analyse genotypic changes by means of next generation sequencing and will monitor phenotypic changes through real-time cell monitoring techniques, comparative proteomics, and anatomopathological analysis of virus-induced lesions. Our results will help solve the evolutionary puzzle of codon usage bias, and will have implications for the development of therapeutic vaccines to guide the immune response towards the identification and targeting of the main protein species, avoiding the chemical noise generated by protein mistranslation. ver más
30/06/2022
2M€
Duración del proyecto: 78 meses Fecha Inicio: 2015-12-09
Fecha Fin: 2022-06-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2022-06-30
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-CoG-2014: ERC Consolidator Grant
Cerrada hace 10 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5