Enhancing the conversion of 'power to ethylene' through developing surface orien...
Enhancing the conversion of 'power to ethylene' through developing surface oriented catalysts
Ethylene, as a key building block in the chemical industry, has large market demand. Currently, the dominant production route is steam cracking of ethane, which is a highly endothermic and carbon intensive process. Proton ceramic...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-119242RB-I00
PRODUCTOS QUIMICOS DE ALTO VALOR AÑADIDO A PARTIR DE GAS NAT...
132K€
Cerrado
EQC2018-004752-P
Reactor catalítico automatizado y sistema analítico asociado
101K€
Cerrado
MAT2011-23775
DESARROLLO DE CATALIZADORES PARA EL ALMACENAMIENTO Y CONVERS...
160K€
Cerrado
CO2Polymerisation
Conversion of CO2 H2O to Polyethylene through Cascade Electr...
162K€
Cerrado
BES-2010-036537
MODIFICACION Y OPTIMIZACION DE CATALIZADORES BASADOS EN MATE...
43K€
Cerrado
EEBB-I-12-04136
MODIFICACION Y OPTIMIZACION DE CATALIZADORES BASADOS EN MATE...
5K€
Cerrado
Información proyecto PEEC
Duración del proyecto: 30 meses
Fecha Inicio: 2022-08-05
Fecha Fin: 2025-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Ethylene, as a key building block in the chemical industry, has large market demand. Currently, the dominant production route is steam cracking of ethane, which is a highly endothermic and carbon intensive process. Proton ceramic electrochemical cells (PCECs) can selectively remove hydrogen from the reaction system, thus breaking the thermodynamic equilibrium limitation. In this project, the improved PCECs equipped with high-performance anodes catalysts will be used as environmental-friendly, efficient, and reliable way to co-produce ethylene and hydrogen from ethane at low temperature (400-550 C), demonstrating ethane conversion not less than 50% and ethylene selectivity not less than 80%. Here, we will combine hydrothermal synthesis and in-situ grown nanoparticles from matrix crystal lattice to develop the nanocatalyst with the specific surface facet and meta-oxide interface. The research tasks will be distributed into 6 work packages (WPs). In WP1, We will use hydrothermal synthesis to prepare nanocatalysts with specific surface orientation and in-situ growth of metal nanoparticles from the pre-doped matrix crystal lattice to form a special anchored interface structure, improving the stability and efficiency of the catalysts. In WP2, we will integrate the well-defined catalysts into the halfcells with the BaCe0.7Zr0.1Y0.1Yb0.1O3 anode backbone through infiltration. In WP3, the ethane conversion and ethylene selectivity of the PCEC will be characterized by gas chromatography supported with electrochemical characterizations. In WP4, DFT calculations in combination with surface characterization will be conducted to explore the reaction mechanism of ethane dehydrogenation at the anode. In WP5, we will cooperate with other laboratories for discussion and advice. In WP6, we will disseminate our results in time to expand the impact.