Enhancing the conversion of 'power to ethylene' through developing surface orien...
Enhancing the conversion of 'power to ethylene' through developing surface oriented catalysts
Ethylene, as a key building block in the chemical industry, has large market demand. Currently, the dominant production route is steam cracking of ethane, which is a highly endothermic and carbon intensive process. Proton ceramic...
Ethylene, as a key building block in the chemical industry, has large market demand. Currently, the dominant production route is steam cracking of ethane, which is a highly endothermic and carbon intensive process. Proton ceramic electrochemical cells (PCECs) can selectively remove hydrogen from the reaction system, thus breaking the thermodynamic equilibrium limitation. In this project, the improved PCECs equipped with high-performance anodes catalysts will be used as environmental-friendly, efficient, and reliable way to co-produce ethylene and hydrogen from ethane at low temperature (400-550 C), demonstrating ethane conversion not less than 50% and ethylene selectivity not less than 80%. Here, we will combine hydrothermal synthesis and in-situ grown nanoparticles from matrix crystal lattice to develop the nanocatalyst with the specific surface facet and meta-oxide interface. The research tasks will be distributed into 6 work packages (WPs). In WP1, We will use hydrothermal synthesis to prepare nanocatalysts with specific surface orientation and in-situ growth of metal nanoparticles from the pre-doped matrix crystal lattice to form a special anchored interface structure, improving the stability and efficiency of the catalysts. In WP2, we will integrate the well-defined catalysts into the halfcells with the BaCe0.7Zr0.1Y0.1Yb0.1O3 anode backbone through infiltration. In WP3, the ethane conversion and ethylene selectivity of the PCEC will be characterized by gas chromatography supported with electrochemical characterizations. In WP4, DFT calculations in combination with surface characterization will be conducted to explore the reaction mechanism of ethane dehydrogenation at the anode. In WP5, we will cooperate with other laboratories for discussion and advice. In WP6, we will disseminate our results in time to expand the impact.ver más
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.