Conversion of CO2 H2O to Polyethylene through Cascade Electro reduction Polymeri...
Conversion of CO2 H2O to Polyethylene through Cascade Electro reduction Polymerisation Catalysis
The global production of polyethylene is over 100 million tones annually. Carbon dioxide is a major cause of global warming but at the same time, it is also an abundant feedstock for hydrocarbon energy fuels. Electrochemical reduc...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto CO2Polymerisation
Duración del proyecto: 32 meses
Fecha Inicio: 2020-03-11
Fecha Fin: 2022-11-14
Líder del proyecto
KEMIJSKI INSTITUT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
162K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The global production of polyethylene is over 100 million tones annually. Carbon dioxide is a major cause of global warming but at the same time, it is also an abundant feedstock for hydrocarbon energy fuels. Electrochemical reduction of CO2 into valuable chemical feedstocks such as polyethylene is a highly enticing challenge for simultaneous settling of energy and environmental issues.
Currently, CO2 conversion to polyethylene occurs through an indirect two-step process including CO2 catalytic conversions to ethylene (CO2 hydrogenation) and ethylene to polyethylene (ethylene polymerization) using two different catalysts, separately. The novelty of my research is constructing a bifunctional catalyst for CO2 direct conversion to polyethylene through a cascade of electro-reduction–polymerization catalysis in the presence of water. So far, a catalyst that sequentially transforms CO2 into polyethylene has not yet been presented. Manifold catalysts have been demonstrated as potential candidates for CO2 polymerization to polyethylene. The state-of-the-art catalysts as constituents of the proposed bifunctional catalyst would be Copper and Palladium. Cu is responsible for binding *CO intermediates and converting them into C2H4 and Pd is highlighted for ethylene polymerization after Ziegler-type and metallocene-type catalysts. Using computational software packages, I will develop a multiscale and multiphysics model of direct CO2 electrochemical reduction to polyethylene over Cu-Pd bifunctional catalyst to predict the intermediates and products. To achieve this goal, I will carry out a quantum chemical analysis of the reaction pathway, a microkinetic model of the reaction dynamics, and a continuum model for mass transport of all species through the electrolyte. In parallel, computational achievements will be executed experimentally to produce a creative bifunctional catalyst from merging two different catalysts for the CO2 cascade transformation to polyethylene directly.