Mechanistic Insights into electrochemical CO2 Reduction Reaction on Copper-based...
Mechanistic Insights into electrochemical CO2 Reduction Reaction on Copper-based alloys and intermetallics
Notwithstanding the ongoing race to develop new efficient energy storage and conversion technologies and reduce greenhouse gases in the atmosphere, the global emission of carbon dioxide (CO2) due to anthropogenic activities is rea...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ChemCatSusDe
ChemCatSusDe Chemical Catalysis towards a Sustainable Devel...
11K€
Cerrado
ChemCatSusDe
ChemCatSusDe Chemical Catalysis towards a Sustainable Devel...
147K€
Cerrado
CO2Polymerisation
Conversion of CO2 H2O to Polyethylene through Cascade Electr...
162K€
Cerrado
SupraFixCO2
Supramolecular Catalysis for Chemofixation and Electroreduct...
225K€
Cerrado
MOCCA
Metal Organic Cages for Catalysis Applications
171K€
Cerrado
BES-2017-080602
DESARROLLO Y APLICACIONES DE REACCIONES CATALIZADAS POR META...
93K€
Cerrado
Información proyecto MI-CORE
Duración del proyecto: 36 meses
Fecha Inicio: 2022-08-11
Fecha Fin: 2025-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Notwithstanding the ongoing race to develop new efficient energy storage and conversion technologies and reduce greenhouse gases in the atmosphere, the global emission of carbon dioxide (CO2) due to anthropogenic activities is reaching critic levels, posing a serious threat to a sustainable development. The major objective of this project is to open new avenues toward the capture and conversion of CO2 through the development of novel transition metal-based intermetallic compounds as catalysts for the electrochemical CO2 reduction reaction (eCO2RR).
Identifying the active sites of a catalyst and the species involved in the CO2RR electrochemical process is a precondition for the rational design of top-performing catalysts exhibiting both high activity and high selectivity toward valuable products.
For this reason, this project aim to understand the dynamic evolution of the catalysts by detecting the intermediate states of the reaction process in real time using state-of-the-art synchrotron scattering techniques, such as operando X-ray powder diffraction and X-ray absorption spectroscopy, to ultimately disclose the mechanisms of reaction.
Reaching this goal is the key toward the successful design of technologically relevant catalytic systems able to effectively subtract CO2 from the atmosphere and convert it to useful and economically relevant chemicals.