DynOMIS aims to elucidate the antigen selection mechanisms of the adaptive immune system at the molecular level in the highly complex cellular environment. Major histocompatibility complex class I molecules (MHC-I) is a key mediat...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BIO2014-54164-R
DESARROLLO ASISTIDO POR COMPUTADORA DE VACUNAS DE EPITOPOS:...
109K€
Cerrado
KineTic
New Reagents for Quantifying the Routing and Kinetics of T c...
2M€
Cerrado
IMAP
Integrative mechanistic and multi omics Modelling of Antigen...
1M€
Cerrado
NEWCARBOVAX
New generation of carbohydrate based vaccines via rational u...
244K€
Cerrado
SAF2015-66193-R
UTILIZACION DE MEDICINA DE SISTEMAS PARA LA PREDICCION DE LA...
182K€
Cerrado
THERAVAC
Development of a therapeutic HPV vaccine via target epitope...
100K€
Cerrado
Información proyecto DynOMIS
Duración del proyecto: 30 meses
Fecha Inicio: 2016-03-04
Fecha Fin: 2018-09-05
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
DynOMIS aims to elucidate the antigen selection mechanisms of the adaptive immune system at the molecular level in the highly complex cellular environment. Major histocompatibility complex class I molecules (MHC-I) is a key mediator of adaptive immunity, the cell’s arsenal against infectious pathogens and malignant transformations. MHC-I present antigenic peptides to cytotoxic T lymphocytes at the cell surface, which in turn unleash their cytotoxic apparatus only when peptides from non-healthy proteins are recognized. This process is the result of an equally important peptide selecting function in the early secretory pathway, a mechanism that has not been clearly understood in spite of its fundamental role in vaccination. Deep understanding of the exact mechanisms that drive peptide selection by MHC-I will help to predict immunoprotective epitopes in infections and cancer, which will in turn pave the way for the development of more effective T cell-targeting vaccines and biomarkers to stratify patients’ suitability for immunotherapy.
DynOMIS will employ a sophisticated, interdisciplinary approach that integrates quantitative computational systems modelling to identify molecular mechanism from cellular biochemical information, experimental investigation of the structure and dynamics of peptide-bound MHC-I over a large range of timescales, and state-of-the-art molecular dynamics simulations and free energy calculations to elucidate the thermodynamic basis of the peptide selection mechanism in the context of their interactions with cellular cofactors. To this end, DynOMIS will be carried out by an experienced researcher at a world-leading interdisciplinary group comprising molecular immunologists, structural biologists, computational chemists, and industrial partners with a strong focus on clinically relevant immunological research.