Brain disorders present a staggering health-care burden, costing around 800 billion euros per year in the EU and affecting almost 180 million people. Currently, development of treatments for these disorders is very unsuccessful. O...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NCBio
Unlocking excellence in research and innovation in neurobiol...
2M€
Cerrado
3D-BrAIn
Revolutionary high-resolution human 3D brain organoid platfo...
2M€
Cerrado
COMMER-CELL
Commercialisation of neuronal cell co cultures
100K€
Cerrado
BRAINtSERS
BRAIN organoids unTanglement with SERS
175K€
Cerrado
SYNSYS
Synaptic Systems dissecting brain function in health and di...
14M€
Cerrado
Información proyecto HumanNeuronScreen
Duración del proyecto: 18 meses
Fecha Inicio: 2020-10-27
Fecha Fin: 2022-04-30
Líder del proyecto
STICHTING AMSTERDAM UMC
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
150K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Brain disorders present a staggering health-care burden, costing around 800 billion euros per year in the EU and affecting almost 180 million people. Currently, development of treatments for these disorders is very unsuccessful. Of all currently prescribed drugs, >30% target G-protein coupled receptors, that are typically activated by neuromodulators. Neuromodulators are signaling molecules secreted by most neurons, which regulate many processes in our brain and body. Dysregulation of neuromodulator secretion is firmly associated with many neuropsychiatric disorders, but no screening assay for neuromodulator secretion is currently available to test drug candidates. We have developed a human-based neuromodulator screening assay for preclinical testing of compounds for neuropsychiatric disorders. This assay, the HumanNeuronScreen, uses human neurons derived from somatic patient cells (e.g. skin), to maximally approach the situation in the patients’ CNS and thereby greatly enhancing target validation and lead optimization in preclinical research. It delivers in depth knowledge on the mechanism, potency and selectivity of drug candidates, supporting a higher success rate for clinical trials. Therefore, the value proposition of our product consists of a drastic reduction of costs in drug-development for pharmaceutical and biotech companies, and potentially impacts on 180 million patients in Europe. This proof-of-concept project aims to prove the commercial potential for the HumanNeuronScreen by measuring a reference library of compounds that establishes the resolution, reproducibility and dynamic range of the screen. An IP strategy will be developed to ensure a market position and business strategy will be created and validated. Together, this maximizes the value of the research conducted in the ERC Advanced grant DCV fusion.