Dopaminergic modulation of plasticity during social learning
This project combines computational modeling, electroencephalography (EEG), functional magnetic resonance imaging (fMRI) and neuropharmacology to investigate the modulation of synaptic plasticity by dopamine during learning about...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-125453OB-I00
LA BASE NEURONAL DE SESGOS HISTORICOS EN MEMORIA DE TRABAJO...
236K€
Cerrado
DA AND DECISIONS
The role of dopamine and novelty in decision making in human...
169K€
Cerrado
ODICODAS
Optical dissection of cortical dopamine signaling
185K€
Cerrado
BIOSOCIOCOG
Oxytocin and Dopamine Interplay in Humans on the Biology o...
100K€
Cerrado
INTERPLASTICITY
Long term synaptic plasticity in interneurons mechanisms an...
3M€
Cerrado
TOPLACIR
A two photon survey of the plasticity of the neocortical mic...
234K€
Cerrado
Información proyecto Dopamine&plasticity
Líder del proyecto
University of Zurich
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
179K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project combines computational modeling, electroencephalography (EEG), functional magnetic resonance imaging (fMRI) and neuropharmacology to investigate the modulation of synaptic plasticity by dopamine during learning about both social and reward-based information. The purpose of the project is to evaluate biologically and computationally interpretable models for obtaining quantitative indices of synaptic plasticity during learning using both EEG and fMRI recording methods. To this aim, we apply a learning paradigm that combines both social and reward-based cues to guide behaviour. Following behavioural assessment, this paradigm will be used in pharmacological EEG and fMRI studies of healthy volunteers, employing a double-blind, placebo-controlled between-subject design with dopaminergic agents. Joint EEG and fMRI recordings will be obtained and analysed using state of the art modeling techniques, including novel approaches that embed hierarchical Bayesian learning models into nonlinear dynamic causal models. Specifically, we will test whether the models can quantify drug-induced changes in synaptic plasticity that occur as a function of trial-wise learning variables, such as reward prediction errors. Finally, we will use recent advances in model-based decoding to test whether our models can detect which pharmacological manipulation took place in any given subject. If these models prove to be mechanistically interpretable, this research could pave the way for future development of non-invasive, model-based measures of neurotransmitter regulation of synaptic plasticity in patients with psychiatric disorders.