Distributed dynamic REpresentations for diAlogue Management
Our ability to communicate using language in conversation is considered the hallmark of human intelligence. Yet, while holding a dialogue is effortless for most of us, modelling this basic human skill by computational means has pr...
Our ability to communicate using language in conversation is considered the hallmark of human intelligence. Yet, while holding a dialogue is effortless for most of us, modelling this basic human skill by computational means has proven extremely difficult. In DREAM, I address this challenge by establishing a new computational model of a dialogue agent that can learn to take part in conversation directly from data about language use. DREAM stands at the crossroads of the symbolic and the sub-symbolic traditions regarding the nature of human cognitive processing and, by extension, its computational modelling. My model is grounded in linguistic theories of dialogue, rooted in the symbolic tradition, but exploits recent advances in computational learning that allow the agent to learn the representations that it manipulates, which are distributed and sub-symbolic, directly from experience. This is an original approach that constitutes a paradigm shift in dialogue modelling --- from predefined symbolic representations to automatic representation learning --- that will break new scientific ground in Computational Linguistics, Linguistics, and Artificial Intelligence. The DREAM agent will be implemented as an artificial neural network system and trained with task-oriented conversations where the participants have a well-defined end goal. The agent will be able to integrate linguistic and perceptual information and will be endowed with the capability to dynamically track both speaker commitments and partner-specific conventions, leading to more human-like and effective communication. Besides providing a breakthrough in our capacity to build sophisticated conversational agents, DREAM will have substantial impact on our scientific understanding of human language use, thanks to its emphasis on theory-driven hypotheses and model analysis.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.