Dissecting spinal cord ependymal cell heterogeneity by single cell transcriptomi...
Dissecting spinal cord ependymal cell heterogeneity by single cell transcriptomics
Cells with stem cell potential, this is with the ability to self-renew and generate specialised progeny, exist in the adult mammalian spinal cord. Previous studies localised this potential within the ependymal cell (EC) population...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BRAINCELL
Charting the landscape of brain development by large scale s...
1M€
Cerrado
QUANT CELL STATE
A quantitative analysis of single cell variation in transcri...
197K€
Cerrado
ORGANOMICS
Reconstructing human cortex development and malformation wit...
2M€
Cerrado
i-SignalTrace
Deciphering signalling pathway dynamics during cell-fate com...
2M€
Cerrado
CellTrack
Cellular Position Tracking Using DNA Origami Barcodes
2M€
Cerrado
BRAINTIME
Molecular atlas of the brain across the human lifespan
4M€
Cerrado
Información proyecto ECtomics
Duración del proyecto: 24 meses
Fecha Inicio: 2017-03-16
Fecha Fin: 2019-03-31
Líder del proyecto
UNIVERSITY OF DUNDEE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
183K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Cells with stem cell potential, this is with the ability to self-renew and generate specialised progeny, exist in the adult mammalian spinal cord. Previous studies localised this potential within the ependymal cell (EC) population. However, ECs are rather heterogeneous based on their morphological features and the expression of a handful of neural stem cell markers. In this interdisciplinary research proposal, I aim to uncover the cellular and molecular heterogeneity of ECs at the level of individual cells. I propose to take advantage of cutting-edge single-cell RNA-sequencing technology to obtain the transcriptomes of individual ECs from the spinal cord of adult mice. Using advanced computational methods, I will establish EC types and states and use pseudotemporal ordering to elucidate potential lineage relationships among ECs. I will then validate these findings in the tissue context, using high-resolution confocal microscopy. This first comprehensive characterisation of spinal cord ECs will provide novel and fundamental insights into how ECs possess and maintain their unique self-renewing properties. In the future, this will facilitate realisation of the potential of spinal cord stem cells for therapeutic purposes.