Discovering a new family of hypermodified antimicrobial peptides from marine tun...
Discovering a new family of hypermodified antimicrobial peptides from marine tunicates and exploring their potential applications
The spread of antimicrobial resistance among human pathogenic bacteria and fungi is a major global and European concern, urgently necessitating the development of novel antibiotics. Another unsolved global healthcare problem is th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2013-48399-R
PREPARACION DE PEPTIDOS ANTIMICROBIANOS DE USO EN SALUD HUMA...
175K€
Cerrado
BACtheWINNER
Bacteriocins from interbacterial warfare as antibiotic alter...
3M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The spread of antimicrobial resistance among human pathogenic bacteria and fungi is a major global and European concern, urgently necessitating the development of novel antibiotics. Another unsolved global healthcare problem is the burden of infections acquired through invasive medical devices. Antimicrobial peptides (AMPs) could be the solution to both problems, but they are currently limited by high cost, insufficient efficacy and stability as well as restricted chemical options for biotechnological production. However, in a group of marine animals: tunicates, there is a major, poorly characterized superfamily of AMPs with many advantageous natural chemical modifications. These unusual post-translational modifications (tryptophan bromination, arginine/lysine mono- and dihydroxylation, tyrosine hydroxylation, C-terminal amidation/oxidation) are predicted to improve potency and stability of the mature AMPs and might enable their efficient immobilization onto various surfaces. The latter property could also prove useful for surface coatings. In the current project, we aim to explore these promising bioproducts, from predictions by bioinformatics, through isolation of animal tissues, extraction and enrichment of the actual peptides, to their chemical analysis by mass spectrometry and testing of antimicrobial potency and safety. Project TuniPeps gives a major opportunity to both the applicant and host, to combine their complementary knowledge and skills in order to identify useful natural products from marine animals, acting as blueprints for future antimicrobials. These diverse molecules and their biosynthetic apparatus might also unlock cheap biotechnological production of novel molecules in the near future.