Directly reprogrammed renal cells for targeted medicine
The global incidence of kidney disease is on the rise, but little progress has been made to develop novel therapies or preventative measures.
New methods to generated renal tissue in vitro hold great promise for regenerative medic...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NEPHROTOOLS
The potential of human kidney stem progenitor cells for use...
4M€
Cerrado
GECKO
Generation of cartilage-free kidney organoids: a small molec...
203K€
Cerrado
REGMAMKID
How to regenerate the mammalian kidney
1M€
Cerrado
KIDREGEN
Ivestigating the ability of embryonic stem cell derivatives...
30K€
Cerrado
RESCARF
Renal stem cells possible role in kidney pathologies and as...
820K€
Cerrado
RENOIR
RENal prOgenItoRs as tools to understand kidney pathophysiol...
2M€
Cerrado
Información proyecto DiRECT
Duración del proyecto: 76 meses
Fecha Inicio: 2018-10-17
Fecha Fin: 2025-02-28
Líder del proyecto
UNIVERSITAT ZURICH
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The global incidence of kidney disease is on the rise, but little progress has been made to develop novel therapies or preventative measures.
New methods to generated renal tissue in vitro hold great promise for regenerative medicine and the prospect of organ replacement. Most of the strategies employed differentiate induced pluripotent stem cells (iPSCs) into kidney organoids, which can be derived from patient tissue.
Direct reprogramming is an alternative approach to convert one cell type into another using cell fate specifying transcription factors. We were the first to develop a method to directly reprogram mouse and human fibroblasts to kidney cells (induced renal tubular epithelial cells - iRECs) without the need for pluripotent cells. Morphological, transcriptomic and functional analyses found that directly reprogrammed iRECs are remarkably similar to native renal tubular cells. Direct reprogramming is fast, technically simple and scalable.
This proposal aims to establish direct reprogramming in nephrology and develop novel in vitro models for kidney diseases that primarily affect the renal tubules. We will unravel the mechanics of how only four transcription factors can change the morphology and function of fibroblasts towards a renal tubule cell identity. These insights will be used to identify alternative routes to directly reprogram tubule cells with increased efficiency and accuracy. We will identify cell type specifying factors for reprogramming of tubular segment specific cell types. Finally, we will use of reprogrammed kidney cells to establish new in vitro models for autosomal dominant polycystic kidney disease and nephronophthisis.
Direct reprogramming holds enormous potential to deliver patient specific disease models for diagnostic and therapeutic applications in the age of personalized and targeted medicine.