Generation of cartilage-free kidney organoids: a small molecule strategy
The prevalence of chronic kidney disease in Europe varies from 3.3–17.3% and has risen during the last decades. In the world, 9.7 million people need kidney replacement therapy, but only 2.6 million will receive it. These numbers...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
KNOVV
Kidney Nephron Orientation in Vivo-like in Vitro
254K€
Cerrado
REGMAMKID
How to regenerate the mammalian kidney
1M€
Cerrado
RESET
Dreaming of no more renal dialysis how self derived tissue...
2M€
Cerrado
DiRECT
Directly reprogrammed renal cells for targeted medicine
1M€
Cerrado
ENGINORG
Engineering kidney organoids to study the interplay between...
2M€
Cerrado
RENALSTEM
Developing a stem cell based therapy to replace nephrons los...
168K€
Cerrado
Información proyecto GECKO
Duración del proyecto: 25 meses
Fecha Inicio: 2022-07-22
Fecha Fin: 2024-08-31
Líder del proyecto
UNIVERSITEIT MAASTRICHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
203K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The prevalence of chronic kidney disease in Europe varies from 3.3–17.3% and has risen during the last decades. In the world, 9.7 million people need kidney replacement therapy, but only 2.6 million will receive it. These numbers are expected to double within the next 10 years, increasing the pressure to find alternative solutions. Recent scientific developments to generate kidney organoids in vitro have opened the possibility for a regenerative medicine–based approach that would provide a functional substitute to the failing kidney. These kidney organoids can recapitulate renal structures as well as the cellular complexity of human kidney, and may restore glomerular filtration upon transplantation.
In this project, we make use of human induced pluripotent stem cells that can be differentiated with a cocktail of biomolecules and aggregated to form of kidney organoids that are cultured at the air–liquid interface. This protocol leads to the formation of complex renal structures including glomeruli and tubules. While kidney organoids show great therapeutic potential, they also present several drawbacks, one of which is the appearance of off-target cell populations, such as neurons, myocytes and chondrocytes within the organoid. Preventing the appearance of these off-target cells will greatly improve the quality of the organoids. Preventing cartilage formation is most desirable because cartilage completely disrupts the organoids and renders them dysfunctional and unsuitable for in vivo use.
The reasons for the consistent observation of chondrocytes during organoid growth and transplantation are not yet understood. The objective of this work is to understand the molecular mechanisms of cartilage formation in kidney organoids and reduce it using a small molecule strategy.