Directed Orchestration of Microfluidic Environments for guided Self-organisation
In Europe, 263 per 10,000 pregnancies are diagnosed with a fetal congenital anomaly. Congenital anomalies, also referred to as birth defects, are defined as structural or functional disorders that occur during fetal development an...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-094494-B-C22
DISEÑO DE HERRAMIENTAS DE MICROSCOPIA TRIDIMENSIONAL Y PROCE...
129K€
Cerrado
SIMBIONT
A data driven multiscale simulation of organogenesis
2M€
Cerrado
PID2021-122409OB-C22
ANALISIS CUANTITATIVO DE ORGANOIDES DERIVADOS DE PACIENTES D...
145K€
Cerrado
DPI2015-64221-C2-2-R
TECNICAS DE ADQUISICION Y ANALISIS DE IMAGEN MICROSCOPICA PA...
86K€
Cerrado
CPP2021-008396
SISTEMA MICROFLUIDICO PARA APLICACIONES EN TEJIDO EN UN CHIP
378K€
Cerrado
HEART2BEAT
Advanced human models of the heart to understand cardiovascu...
3M€
Cerrado
Información proyecto DOMES
Duración del proyecto: 18 meses
Fecha Inicio: 2022-05-19
Fecha Fin: 2023-11-30
Líder del proyecto
UNIVERSITEIT MAASTRICHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
150K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In Europe, 263 per 10,000 pregnancies are diagnosed with a fetal congenital anomaly. Congenital anomalies, also referred to as birth defects, are defined as structural or functional disorders that occur during fetal development and are inherited, and/or caused by environmental factors. Unfortunately, the link between environmental factors, such as drugs, toxins or other chemicals, and the manifestation of these multifactorial disorders is poorly understood. To identify environmental factors affecting tissue and organogenesis and study their pathogenic mechanisms, new 3D in vitro models with reliable and highly reproducible architecture are urgently needed. None of the current cell culture systems available can provide the controlled environment needed to sufficiently guide the self-organization process of stem cell-based 3D in vitro models. Our new microfluidic platform, DOMES, is the first of its kind, combining precise control over morphogenetic processes with standardized and user-friendly handling. In this project, we will exemplarily focus on congenital diseases of the kidney, in particular the collecting duct system. We will analyse on-chip the impact of specific environmental compounds, such as drugs and endocrine disruptors, on the branching morphogenesis of the collecting duct.
DOMES is a product family of microfluidic 3D cell culture chips which will allow the control and study not only of kidney organoids, but of other 3D cell models including lung, neural, gut organoids and embryoid bodies. This is the first instance of a cell culture platform allowing direct orchestration of the microfluidic environment for guiding self-organisation, symmetry breaking and organogenesis, and represents a paradigm shift in researchers ability to study development of organs and their congenital anomalies in vitro.