Development of neural circuits in the prefrontal cortex
The prefrontal cortex (PFC) is important for a wide range of cognitive behaviours and is impacted in numerous neuropsychiatric disorders. The PFC is thought to function as a key buffer for working memory, allowing us to store and...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BRONC
Behavioral demand driven dynamic reorganisation of cortical...
187K€
Cerrado
PrefrontalMap
Organization and learning associated dynamics of prefrontal...
2M€
Cerrado
OptoMotorPath
Optogenetic dissection of motor cortex dynamics and pathways
1M€
Cerrado
HIRESMEMMANIP
Spiking network mechanisms underlying short term memory
2M€
Cerrado
HIPECMEM
Memory Related Information Processing in Neuronal Circuits o...
1M€
Cerrado
NeuroOptoGen
Optogenetic examination of the role of feedback on visual pr...
2M€
Cerrado
Información proyecto PFCmap
Duración del proyecto: 33 meses
Fecha Inicio: 2020-03-10
Fecha Fin: 2022-12-31
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
213K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The prefrontal cortex (PFC) is important for a wide range of cognitive behaviours and is impacted in numerous neuropsychiatric disorders. The PFC is thought to function as a key buffer for working memory, allowing us to store and manipulate information across time. The PFC is therefore critical to our ability to link past and future events. To do this the circuitry of the PFC must sustain task relevant neural activity across the delay period, when information is stored in memory. This process is thought to occur through recurrent networks in the superficial layers of the PFC, however the organization of these circuits remains poorly understood. This proposal will apply cutting edge optogenetic methods to produce dense, single-cell connectivity maps to elucidate the circuit architecture of the mouse PFC, providing insight into the circuit mechanisms that support mnemonic coding. It will also explore the development of this circuit, to better understand how refinement of connectivity gives rise to adolescent enhancement in PFC dependent cognition. These findings will also test key computational predictions into the mechanisms that support delay period activity. They will therefore be of broad interest to cellular, systems, computational and cognitive neuroscientists.