Spiking network mechanisms underlying short term memory
Short term memory (STM) is impaired at old age and a host of neuropsychiatric disorders, and has been the focus of a multitude of psychological and theoretical studies. However, the underlying neuronal circuit mechanisms remain el...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PSYCHOCELL
Cellular substrate of abnormal network maturation in neurops...
2M€
Cerrado
HIPECMEM
Memory Related Information Processing in Neuronal Circuits o...
1M€
Cerrado
PID2019-108562GB-I00
INTEGRACION DE MEMORIA SOCIAL Y ESPACIAL EN LOS CIRCUITOS AM...
120K€
Cerrado
SAF2011-27766
ESTUDIO DE LOS EFECTOS DE LA EMOCION SOBRE LA COGNICION HUMA...
157K€
Cerrado
DEVMEM
Learning to remember the development of the neural mechanis...
2M€
Cerrado
MNEMOSYNE
Brain computer interface to study and manipulate mamories of...
2M€
Cerrado
Información proyecto HIRESMEMMANIP
Duración del proyecto: 76 meses
Fecha Inicio: 2016-05-26
Fecha Fin: 2022-09-30
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Short term memory (STM) is impaired at old age and a host of neuropsychiatric disorders, and has been the focus of a multitude of psychological and theoretical studies. However, the underlying neuronal circuit mechanisms remain elusive, mainly due to the lack of experimental tools: we suggest that rapid manipulations at the neuronal level are required for deciphering underlying mechanisms. We have developed an approach combining large-scale extracellular recordings and high density multi-site/multi-color optical stimulation (diode-probes), which enables high resolution closed-loop manipulation of multiple circuit elements in intact, free, behaving rodents. After training mice and rats to perform bridging-free STM-tasks, we will evaluate local circuit mechanisms in hippocampus and prefrontal cortex. Two broad classes of manipulations will be used: First, necessary components and timescales needed for STM maintenance will be established by focal real-time silencing of specific cell types and real-time jittering of spiking in those cells. Second, sufficient components (neuronal codes) will be determined by a circuit-training phase, in which novel associations between synthetic brain patterns and behaviorally-relevant short-term memory traces will be established. The first class is equivalent to erasing memories and the second to their writing. Together, these manipulations are expected to reveal global and local circuit mechanisms that facilitate STM maintenance in intact animals